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1 Introduction

In the first 18 months we have defined and characterised the SVEs that are of relevance 
in the context of the project. Depending on the character of the SVE different strategies 
have been applied. These have been described in journal articles [Pauwels and Van 
Hulle (2006), Pauwels et al (2007b), Kalkan et al (accepted), Calow et al (accepted)], 
conferences contribution [Baseski et  al 2007, Pauwels et  al (2007a)], book chapters 
[Chumerin and M. Van Hulle (2007)] as well as  in submitted work [Krueger et al. 
(submitted), Pugeault et al. (to be submitted)] or technical reports [Kalkan et al. 2007a, 
Kalkan et al. 2007b, Pugeault et al. 2007]. These works are given as appendices of this 
deliverable (Appendix A Appendix L). 

The following text gives an outline of our work on SVEs. For details we refer to the 
publications mentioned above. In section 2, we specify the SVEs we are interested in 
while in section 3, we give details about the algorithms we use for their extraction. 

2 Specifications of SVEs

SVEs are defined on different levels of abstraction that then become related to SAEs on 
comparable levels (see Fig. 1). For example, low level SVEs such as the flow rate can be 
directly  matched  to continuous  lowlevel  SAEs such as velocity and steering angle 
control. SVEs of higher level of abstraction are for example crossings that require a 
more elaborated and abstract action and decision making process such as stopping, 
looking to the left and right, deciding about the risk to cross the street, etc..
We distinguish between Automatic Driving Conditions, in which vision controls action 
by means of closedloop circuits, and Intentional Driving Situations, in which decisions 
have to be taken. Examples for Automatic Driving Conditions are straight driving, tail 
gaiting, curve taking, and stopping; whereas Intentional Driving Situations encompass 
corner   taking, overtaking,  obstacle  avoidance  (partly   an  automatic  task!),  and  lane 
changing. 

Fig.  1:    Abstract  view of  an agent.  The horizontal  arrows (in red)  indicate where  linkage  
between sensor and action domain can take place. The vertical arrows indicate that sensor and  
action events must be seen in a certain context, which can be given by higher, or lower level  
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information.

Table 1 lists the different Structured Visual Events along with associated Action Events 
and Learning Circuits. 

Table 1: Specification of SVEs

Structured Visual Events SAE
1 Motion and Stereobased Events
1a Flow rate Straight driving
1b Time to contact (relative speed or looming) tailgating,

Stopping
1c Heading Curve taking
1d Curved flow lines Curve taking
1e Distance to objects Straight driving,

tailgating,
Stopping

2 Independently Moving Objects
2a Number of IMOs tailgating,

Stopping
2b Direction and speed of IMO tailgating, Stopping
2c Time to contact / Distance to objects tailgating,

Stopping
2d Identity (car, truck, (motor)cycle, pedestrian) Tailgating,

Stopping

3 Roadbased information & Spatial layout of the street
3a Curvature and as derivatives: distance from beginning of the 

curve and tangent point
Curve Taking

3b Lane outline and width Straight driving,
Curve taking

3c Distance to lane (road) edges Straight driving,
Curve taking

3d Intersections Stopping
3e Physical narrowing Slowing down, 

precise navigation

4 Objects
4a Tail lights tailgating, Stopping
4b Traffic signs Straight driving,

Stopping
4b Traffic lights Straight driving,

Stopping
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3 Extraction of SVEs

According to the different SVEs described in table 1, we use different strategies for the 
extraction of SVEs that are briefly described in this section. In section 3.1, the 
extraction of motion and stereo events is outlined, in particular the egomotion of the 
car. This work has been published in [Calow et al. (in press), Appendix B; Pauwels and 
Van Hulle (2006), Appendix H]. The extraction of independently moving objects 
(IMOs) is described in section 3.2. Related publications are [Pauwels and Van Hulle 
(2007a), Appendix I; Pauwels et al. (2007b), Appendix J]. In section 3.3, we describe 
the extraction of road based events and objects. Work addressing this issue has 
been/will be published in [Kalkan et al. (in press), Appendix D;  Baseski et al. (in 
press), Appendix A; Chumerin and M. Van Hulle (in press), Appendix C; Krueger et al. 
(submitted), Appendix G; Pugeault et al. (submitted), Appendix K; Pugeault et al. 
(submitted), Appendix L; Kalkan et al. (2007b), Appendix E].  

3.1 Motion and Stereobased Events

Motion and stereo algorithms (see Sabatini et al 2007 for the algorithms used within 
Drivsco) provided present optic flow and depth maps from which flow rate, curved flow 
lines and depth of objects are derived. Timetocontact can either be derived directly 
from optic flow maps or indirectly from objectbased vision within the framework of 
IMO detection (see below).
Concerning   heading,   we   have   provided   significant   advances   in   the   respective 
frameworks of the DRIVSCO proposal. With regard to the proposed analysis of the 
statistics   of   optic   flow   fields,   we   have   conducted   a   new   study   dedicated  to   the 
measurement and the analysis of the statistics of optic flow generated on the retina 
during egomotion through natural environments. We investigated the dependencies of 
the local statistics of optic flow on the environmental depthstructure, the egomotion 
parameters and the position in the field of view. In order to measure these dependencies 
we estimated the mutual information between correlated data sets based on kernel based 
density estimation methods (Calow and Lappe, accepted, Appendix B).  Finally,  we 
investigated a possible link between the statistics of optical flow and receptive field 
properties of motion processing neurons of the Middle Temporal Area (area MT) of the 
primate brain.

Furthermore, a new algorithm has been developed for the computation of egomotion 
(Pauwels and Van Hulle (2006), Appendix H). Egomotion is a crucial midlevel visual 
entity, as it constitutes the base for timetocontact estimation, heading estimation, and 
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independent motion segmentation. This algorithm is particularly robust to local minima, 
while at the same time retaining the accuracy of optimal algorithms. Local minima are 
an important nuisance factor in the presence of independently moving objects.

Video   from carmounted  cameras  is   particularly   sensitive   to   jitter.  Our  optic   flow 
algorithm relies on  temporal consistency,  which  is  disturbed by such  instability.  To 
compensate for this, we have developed a novel stabilization technique that is integrated 
within   the   optic   flow   algorithm   (Pauwels   and   Van   Hulle   (2007b),   Appendix   J). 
Contrary to existing techniques, it does not rely on simplifying assumptions regarding 
the scene layout or type of camera motion. Our technique greatly improves the quality 
of the obtained optic flow.

3.2 Independently Moving Objects (IMOs)

The system we have developed for independent motion detection fuses optic flow, self
motion, and stereo disparity. In theory, the combination of these cues allows for the 
detection of all types of independent motion: those with object heading different from 
observer heading, those with identical direction and sign of relative heading, and those 
with identical direction but opposite sign of relative heading (the most difficult case). 
We are developing a unified approach that can detect all three types. Our approach is 
based on an independence hypothesis  about   the scene  layout provided by  the cues, 
namely the structure estimated from motion and the structure estimated from stereo. 
Both measures are combined in the motion field equation [Thompson and Pong (1990)]. 
Based on inconsistencies therein, a measure of independent motion is obtained. Figure 2 
illustrates the computation of this measure.

left right
structure 

from stereo

t

t+1

optic flow structure
from motion

self-

motion

Fig. 2: Overview of the independent motion detection method.
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Overview of the independent motion detection method:
Two depth maps are extracted, one from optic flow and egomotion (selfmotion), and 
the other  from stereo disparity.   In Fig.2 above, distance  is  colourcoded  from blue 
(close) to red (far). After robustly mapping both maps onto each other, the remaining 
discrepancies  roughly   indicate  the  position of   the  moving objects  (the   cars  in   the 
figure). From these discrepancies, a measure of independent motion that is invariant to 
selfmotion and environment structure is obtained. This invariance allows for temporal 
integration and noisereduction at  the final detection stage. A continuous stream of 
highquality   optic   flow   is   required   to   enable   this   temporal   integration.   Video 
stabilization is therefore of crucial importance, and two methods  have been specifically 
designed in the context of IMO detection. The first method [Pauwels et al. (2007b), 
Appendix J] not only improves the reliability of the optic flow, but also simplifies the 
computation   of   egomotion   by   reducing   the   number   of   parameters,   consolidating 
information near the fovea, and increasing the number of reliable flow vectors. The 
second method [Pauwels and Van Hulle (2007a), Appendix I] was designed to deal with 
highly complex combinations of camera motion and IMOs. It has been shown to greatly 
increase optic flow density and reliability, even in situations of unstable camera motion 
in a scene that is dominated by moving objects.
Figure 3 contains a few example scenes with the detected independently moving regions 
marked in yellow. The locations corresponding to the moving objects are clearly marked 
on all occasions.  

Once the independently moving regions have been identified, they can be tracked in 
time and disambiguated. This allows for a finer description of certain attributes of the 
moving regions. Examples are distance, speed, identity (car, person, bike). This is the 
subject of deliverable 6.2 and has been also described in [Chumerin and Van Hulle 
(2007)].

     

Fig. 3: Independent motion detection results.
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3.3 Roadbased Information and Objectbased Events

In Ecovision (Ecovision, 20012003), we have derived a representation which extracts 
semantically rich information in terms of local multimodal  primitives  (Krüger et al., 
2004, Krueger et al (submitted), Appendix G). Multimodal primitives provide generic 
information that can be applied to different kinds of problems in the context of scene 
analysis. However, it requires a significant amount of processing power, which will be 
done largely on FPGAs (WP1WP3). Here, we will show that we can tackle different 
problems such as lane detection, traffic sign localization and obstacle avoidance within 
this representation

Road based information can also be represented by methods where vision procedures 
are very much designed towards a specific application. This can be very efficient and is 
used to detect the curvature of the lane markers and to extract the ground plane. In this 
context, we have developed a very fast lane marker detection system that approximates 
the lane as polynomials and by this gives curvature information as well as a ground 
plane detection system. These are described in section 3.3.2. 

3.3.1 SVEs Defined by Relations of Condensed Semantic Descriptors

Based   on   the   symbolic   multimodal 
descriptors   (Krueger   et   al.   (submitted), 
Appendix G) developed mainly in the course 
of the ECOVISION project, we investigated an 
object representation framework making use of 
relations   between   collinear   groups   of   such 
primitives.   This   approach   shows   some 
distinguishing properties: 

• Information is processed over a hierarchy 
starting from lowlevel filter processes and 
ending with nearly   textual description of 
objects (see figure 4). The hierarchy levels 
are:   the   original   image   information,   a 
linear   filtering and a  nonlinear  filtering 
stage,   2D   symbolic   description,   3D 
symbolic  description, 3D groups, 2D3D 

contours, parts, objects, and finally scene descriptions. The higher levels can be 
related to textual descriptions, allowing for semantic reasoning. 

Fig 4: Proposed symbolic hierarchy.
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• In this hierarchy, bottomup and topdown processes take place (see work on the 
signalsymbol loop in WP 3).

• This   representation  is   rich  because  it   covers   2D and 3D geometric   as  well   as 
appearance   based   information.   Different   sources   of   information   can   be   used 
according to its reliability and adequacy for the task at hand.

• Scene structures are represented not only as sets of local features, but also in terms 
of   relations   between  entities   at   different   levels   of   the   hierarchy      higher   level 
relations allowing for a making semantics explicit close to a textual description of 
such structures.

The Structured Visual Events (SVE) discussed herein can then be described in terms of 
such high level relations on their geometry and aspect. This implies the assumptions 
that the SVEs structures can be suitably represented as sets of primitives. Examples of 
valid SVEs are lane markers, traffic signs, obstacles, etc. The SVEs are defined in three 
steps: first, the primitives are extracted (Krüger et al. (submitted), Appendix G); second, 
locally collinear primitives become grouped and finally connected (see Fig. 6b and c). 
Additional  relations between 2D and 3D primitives are defined  to  express  relevant 
structural properties: coplanarity, cocolority, and parallelism – they are detailed in 
(Kalkan et al., 2007, Appendix E), see also figure 5.  A first attempt for this has been 
described in (Pugeault et al., 2007, Appendix K) which becomes currently refined by a 
more global parameterization of semiglobal 2D and 3D entities. Such descriptions are 
a form of “Gestalts” that can then be combined, matched against databases of known 
objects, and interpreted in the driving context. As shown in Fig. 6d, we have already 
achieved first results in scene interpretation using these Gestalts. 

The semantic  richness  of  the early  cognitive vision system allows  for a  high  level 
description of objects in terms of Gestalts properties, and of their relations in terms of a 
rather small set of properties expressed in a languagelike way (two examples are given 
in Fig. 6d). Many objects in a traffic environment have well defined properties, e.g., 
street markings have a set width and distance to each other and traffic signs have a 
defined colour and shape. For example, in Fig. 6d the road is defined by two lanes 
(corresponding to Gestalts that were extracted in a bottomup procedure) which are co
planar, parallel, and have a certain distance while the lane itself are defined by other 
attributes such as cocolority and coplanarity.
This prior knowledge of relevant scene structures properties can be used to search for 
them effectively . Since the bottomup process that generates the Gestalts divides the 
scene in a relatively low order set of high level entities, an identification of objects by 
model knowledge can be performed rather fast. Note that this will also allow to draw 
correlations between SVEs and SAEs at different levels of abstraction (see Fig. 1), e.g., 
the  lane level  (e.g.,   lane following) and the road structure  level (which can involve 
higher level decision processes). We have obtained first results (see Baseski et al. (in 
press), Appendix A) supporting further investigation of this approach scheduled for the 
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Fig. 5: Example of the relations that can be drawn between primitives. a) the distance between 
two  primitives,  using  Euclidian  and  Mahalanobis  distances.  Each  image  shows,  for  one 
reconstructed primitive, all primitives that are at a distance of 120cm, indicated by the red 
lines. This is shown for nearby and far primitives, and using an Euclidian or Mahalanobis  
criterion. For nearby primitives both criteria pairs successfully primitives on both sides of the  
road,  whereas  for  primitives  farther  away  the  Euclidian  criterion  pairs  significantly  less 
primitives. In b) the red lines indicate co-planar primitives (this illustrate the relative weakness  
of the coplanarity constraint when used on its own). In c) red lines show co-color primitives;  
and d) collinear primitives. In all case, red lines show all primitives paired with one chosen  
primitive. 
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Fig. 6: Example of SVE extraction using parallelism: (a) the original image; (b) the extracted  
contours; (c)   Gestalts being   extracted partly already   representing   SVEs; (d) Two objects,  
circular traffic sign and street markers, as low order semantic   combinations of Gestalts as  
SVEs.

Figure 7: Three road scenes and the depth information at the road surface (shown 
as a disparity map), which is estimated from the depth information available at the 
lanes and the edges of the road. 
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Fig. 8: Left: By the robot recorded street scenery in the lab. Middle: The image after applied  
edge detection, grouping and joining. The line detected as inner right street marking is plotted  
in white, other edges in light grey. Right: The polynomials from the output file plotted. The  
colours correspond to the colour coding used in the output example. Thus, the first part is red,  
the second green and the last blue.

next period. Note that, since we make also use of 3D information1, we have to deal with 
the uncertainty  thereof  (see  top of  figure 5a where  the difference between a naïve 
Euclidian distance measure and the use of the Mahalanobis distance is demonstrated). 

Note  that  an explicit   knowledge of   the  uncertainties  involved  in   the  reconstruction 
process is necessary to compute the Mahalanobis distance. This issue has been treated 
in a separate work (Pugeault et al. (to be submitted), Appendix K). 

Within the representation described above, we have also addresses the issue of road 
estimation. It has been shown in (Kalkan et al (in press), Appendix D) using colored 
range images that depth at homogeneous image areas is related to the depth of the edge 
segments in the neighborhood. This fact is utilized in (Kalkan et al. (2007b), Appendix 
F)  in  the form of a  votingbased depth prediction model, which estimates depth at 
homogeneous image areas from the depth of edge structures in the scene. The depth of 
edge structures is computed using the multimodal primitives allows for the estimation 
of depth at  in  particular homogeneous  image areas.  In Fig.  7  the road structure  is 
computed as the dominant coplanar surface for three outdoor scenes.

3.3.2 Street Trajectory Parameterized by Polynomials

The probably most fundamental SVE is the trajectory of the street. In order to apply any 
learning   algorithm,   street   markings   must   be   extracted   and   made   available   in   an 
appropriate representation in real time. 

1 Note that we are not dogmatic in terms of advocating the use of 3D information instead of 2D 
information but that we acknowledge that depending on the context and task both types of information 
are useful and should be accessible with the underlying uncertainties.
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To detect street markings in the images recorded by the robot, e.g. as shown in Fig. 8, 
several steps are necessary.  It must be assured  that all pixels  found are part  of  the 
marking, as others would add undesired noise  to  the description. Furthermore  it   is 
desirable to find all pixels that contribute to the street marking, as any less would be a 
source of noise. For this we use the common assumption that the longest line in the 
image describes the street lane marking. Unfortunately noise in the recorded images, 
reflections, and occlusions provoke edges interruptions. Thus, the longest line in the 
edge image, indicating the street marking, may decay into short  line segments. The 
methods used  to  deal  with   these  interruptions  are   very   technical  and  shall   not  be 
described here. The result is a nearly unfragmented right lane marking, where detection 
of the left lane is left for further processing. Note, the left lane is often not visible in the 
image, or only a short part of it, due to the limited field of view allowed by the deployed 
lenses. 

The   detected   lane   is   then   represented   by   a   function   fitting   method   where   we 
approximate the line piecewise with three polynomials. The algorithm outputs are the 
polynomials parameters, a timestamp and an indication whether the detected marking 
describes the left or the right lane. Three polynomials are used because every single one 
tends to diverge at the outer limits of the curve. An interval is given which indicates 
where the given polynomial is defined. In the example above, polynomials for different 
coefficients are drawn, and colour coded as follows:

part 0: 139.835 + 0.0660085*x  0.000173041*x.^2 + 1.64977e06*x.^3
part 1:   2400.2  14.5005*x_2 + 0.0304645*x_2.^2 – 1.92065e05*x_2.^3
part 2: 84.8001 + 0.32184*x_3 + 0.00171013*x_3.^2 9.44763e07*x_3.^3

3.3.3 Ground plane detection

In order to estimate the ground plane, we estimate the disparity plane, then map the set 
of points from the disparity domain into a 3D world domain, and finally fit a plane 
through the projected set (a detailed description is given in [Chumerin and Van Hulle 
(in press), Appendix C).

Before the disparity plane estimation, we intersect the disparity map with the pre
defined road mask (see Fig. 9, left panel). By this step, we filter out the majority of 
pixels which do not belong to the ground plane and are outliers in the disparity plane 
linear model.
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Figure 9: Ground plane detection

The disparity plane parameters are estimated using IRLS (Iteratively Reweighted Least
Squares with weight function proposed by (Beaton 1974). For the ground plane para
meters estimation, we choose a set of nine points 3x3 lattice) in the lower half of the 
frame (see Fig. 9, right panel). Disparities for these points are determined using the es
timated disparity plane. Given the disparities and camera calibration data, we project 
the selected points into a 3D world coordinate system. In addition, we add two socalled 
stabilization points which correspond to the points where the front wheels of the test car 
are supposed to touch the road surface. For the inverse projection of the stabilization 
points, we use parameters of the canonic disparity plane: it is a disparity plane which 
corresponds to the horizontal ground plane observed by cameras in a quiescent state. 
The parameters of the canonic disparity plane and positions of the stabilization points 
were obtained based on the test car geometry and camera setup position and orientation 
in the test car.

The full set of 11 points is then used for IRLS fitting of the ground plane in a world co
ordinate system. During the disparity plane estimation, we use the estimation from the 
previous frame for weight initialization in IRLS; for the first frame, for the same pur
pose, we use the parameters of the canonic disparity plane. We assume that the ground 
plane is estimated correctly if its orientation has a quite small deviation (norm of differ
ence of the unity normal vectors) from the orientation of the canonic ground plane and 
in the same time from the orientation of the plane obtained at the previous frame. Oth
erwise the estimation from the previous frame is used.
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Abstract

Visually extracted 2D and 3D information have their
own advantages and disadvantages that complement each
other. Therefore, it is important to be able to switch between
the different dimensions according to the requirements of
the problem and use them together to combine the reliabil-
ity of 2D information with the richness of 3D information.
In this article, we use 2D and 3D information in a feature-
based vision system and demonstrate their complementary
properties on different applications (namely: depth predic-
tion, scene interpretation, grasping from vision and object
learning)1.

1. Introduction
There exist acknowledged differences between visually

extracted 2D and 3D information (see, e.g., [2, 4]). In ad-
dition to the difference in dimension, two aspects of 2D in-
formation can be distinguished [12]: appearance based in-
formation (such as pixel color values or contrast transition)
and geometric information (such as the position and orien-
tation of a local edge). An overview of such differences is
given in Table 1.

Two dimensional geometric information varies signif-
icantly with viewpoint changes. Actually, it is only the
change of 2D orientation that allows for the reconstruction
of a 3D orientation. For many tasks such as object recogni-
tion, this imposes the problem to compensate for this vari-
ance which can be done for example by invariant descriptors
(see, e.g., [10, 11]). However, an invariance to such trans-
formations leads necessarily to a weakening of the struc-
tural richness of the representations since properties that the

1This work has been supported by EU-Project Drivsco

system becomes invariant to can not be represented any-
more.

For both types of 2D information, geometric or appear-
ance based, the transformation under viewpoint changes can
be computed explicitly or at least approximated once the un-
derlying 3D model is known. Hence, using 3D information
reduces the problem of variance under view-point transfor-
mation (with the exception of occlusions) and also allows
to compute rich geometric information in terms of 3D po-
sition and 3D orientation. It also allows for the definition
of semantic relations such as the Euclidian distance of vi-
sual entities or their co-planarity (see below). Moreover, in
the context of robotic systems, the 3D space is closer to the
space the action takes place in comparison to the 2D image
space. For example in grasping, the transformation between
joint co-ordinates and 3D pose is usually trivial [13]; and
in navigation, planning is often done in maps representing
depth information in an Euclidian way.

However, there are also problems connected to the use of
3D information. First, significantly more complex process-
ing is required: Besides the fact that multiple cameras are
required that usually need to be carefully calibrated, corre-
spondences need to be found. For feature based matching,
this imposes a number of possible error sources. For ex-
ample, besides the possibility of a wrong match, it might
even be that a feature is extracted in only one of the images.
Moreover, when 3D information is extracted by stereo, the
quality of information highly varies with space since the un-
certainties that are associated to reconstructions at different
positions in Euclidian space are highly non–isotropic and
hence any depth information carries an uncertainty that de-
pends strongly on the viewpoints [15].

We suggest that efficient visual systems should make use
of the complementary properties of 2D and 3D information
according to the actual context and task. This seems to hold

1
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for human vision as well. For example, although 2D in-
formation is sufficient for a large number of vision tasks,
Edelman and Bülthoff [4] have shown that the existence of
3D information reduces the mean error rate for tasks like
recognition. Since 2D information is more reliable but 3D
information is richer, one can for example use the comple-
mentary aspects of both kinds of information by doing se-
mantic reasoning and hypotheses generation in the 3D space
and feed these hypotheses back to lower levels of process-
ing.

In [9], a visual representation, which is based on local
symbolic features called multi-modal primitives, has been
introduced. These primitives (see Figure 1(a)) represent a
local part of the scene in terms of condensed 2D and 3D
information covering appearance based aspects of visual
information (color and local phase) as well as geometric
information in terms of 2D and 3D position and orienta-
tion. These primitives allow for switching between 2D and
3D as well as geometric and appearance based information
and hence their complementary properties can be used effi-
ciently. Moreover, in [15], a model for the uncertainties of
the 3D properties covered by the primitives is derived and
is used to facilitate the reasoning processes in 3D space.

Originally, the multi–modal primitives have been de-
signed to formulate predictions in an early cognitive vision
system to disambiguate visual information (see [19]). In
this work, we make use of this representation to character-
ize scenes and objects by 2D and 3D properties of the prim-
itives as well as by a number of relations defined upon the
primitives such as parallelism, co-planarity etc. We show
that the structural richness of the representations allows for
semantic reasoning about object properties and object rela-
tions in scenes. The representations are rather generic since
they basically cover known attributes of visual information
such as orientation, color, local motion as also computed in
the first stages of human visual processing [7].2 Hence, the
primitives can be made use of for a variety of tasks.

In this paper, the strength of the approach is demon-
strated on a variety of applications such as depth prediction,
road interpretation, grasping, and object learning. Here, we
focus less on the detailed description of the algorithms but
on how the introduced representation facilitates the compu-
tation for the different tasks. In that sense, this article has a
review character of previous works as well.

The paper is structured as follows: In section 2, the vi-
sual representation in [9] is summarized. In section 3, we
then briefly describe 4 applications and in section 4, we re-
flect upon the properties of the representation.

2A more detailed discussion of the biological motivation can be found
in [9].

2. Primitives and Relations
In [9], a visual representation has been introduced in

terms of local condensed symbolic features called multi-
modal primitives. We give a brief description of these fea-
tures in section 2.1. In section 2.2, we introduce perceptual
relations on these symbolic features that are applied in the
applications described in section 3.

2.1. Multi-modal primitives

In its current state, the primitives discussed can be edge-
like or homogeneous and carry 2D or 3D information. For
edge-like primitives, the corresponding 3D primitive is ex-
tracted using feature based stereo. Since correspondences
can not be found for homogeneous image structures, 3D
primitives for these image structures can be estimated from
the surrounding 3D edge-like primitives (see also section
3.1).

An edge-like 2D primitive (Figure 1(a)) is defined as:

π = (m, θ, ω, (cl, cm, cr), f), (1)

where m is the image position of the primitive; θ is the 2D
orientation; ω represents the contrast transition coded in the
local phase; (cl, cm, cr) is the representation of the color,
corresponding to the left (cl), the middle (cm) and the right
side (cr) of the primitive; and, f is the optical flow.

(a) (b)

Figure 1. (a) Two types of edge-like 2D primitives [9] 1) represents
the orientation of the primitive, 2) the phase, 3) the color and 4)
the optic flow. (b) Reconstruction of a 3D primitive from two 2D
primitives.

As the underlying structure of an homogeneous image
patch is different from that of an edge-like patch, a differ-
ent representation is needed for homogeneous 2D primitives
(called monos):

πm = (m, c), (2)

where m is the position in the image, and c is the color of
the mono. Note that these different image structures can be
distinguished by the intrinsic dimension of the image patch
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3D 2D

pr
os

Distances and angles are invariant under camera Distances and angles are variant under camera

co
ns

transformations transformations
Units have physical meaning (distance in millimeters) Pixel coordinates are not directly usable for physical

measurements
Relations are richer (coplanarity,proximity) Restricted to 2D relations
Possible to obtain a complete model of an object To cover all perspectives of an object a high number of

images are required
Directly relatable to actions Requires additional computation to become related to

actions

co
ns High computational complexity Low computational complexity

pr
os

High likelihood of errors and uncertainty Higher reliability

Table 1. Different properties of 2D and 3D information. While 3D information has geometric properties (position and orientation), 2D
information covers also appearance based properties (color,contrast transition etc.).
.

[5]. See [9] for more information about these modalities and
their extraction. Figure 2 shows the extracted primitives for
an example scene.

(a) (b)

(c) (d)

Figure 2. Extracted primitives (b) for the example image in
(a). Magnified edge primitives and edge primitives together with
monos are shown in (c) and (d) respectively.

A primitive π is a 2D feature which can be used to find
correspondences in a stereo framework to create 3D primi-
tives (as introduced in [16]) which have the following for-
mulation:

Π = (M ,Θ,Ω, (cl, cm, cr)), (3)

where M is the 3D position; Θ is the 3D orientation. Ap-
pearance based information is coded in the phase Ω (i.e.,
contrast transition) and (cl, cm, cr) is the representation of

the color, corresponding to the left (cl), the middle (cm)
and the right side (cr) of the 3D primitive. Both, phase and
color, are extracted as a combination of the associated val-
ues in the corresponding 2D primitives in the left and right
image. The reconstruction of a 3D primitive from two cor-
responding 2D primitives is examplified in Figure 2(b).

In section 3.1, we estimate the 3D representation Πm of
monos which stereo fails to compute:

Πm = (M ,n, c), (4)

where M and c are as in equation 2, and n is the orientation
(i.e., normal) of the plane that locally represents the mono.

2.2. Perceptual relations between primitives

The sparse and symbolic nature of the discussed prim-
itives allows for perceptual relations defined on them that
express relevant spatial relations in 2D and 3D space. These
relations can be applied in rather different contexts such as
depth prediction, object learning and grasping (see section
3).

Collinearity: Two spatial primitives Πi and Πj are
collinear (i.e., part of the same group) if they are part of the
same contour. Due to uncertainty in the 3D reconstruction
process, in this work, the collinearity of two spatial primi-
tives Πi and Πj is computed using their 2D projections πi

and πj . We define the collinearity of two 2D primitives πi

and πj as:

col(πi, πj) = 1−
∣∣∣∣sin (

|αi|+ |αj |
2

)∣∣∣∣ , (5)

where αi and αj are as shown in Figure 3(a).
Co–planarity: Two 3D edge primitives Πi and Πj are

defined to be co–planar if their orientation vectors lie on the
same plane, i.e.:

cop(Πi,Πj) = 1− |projtj×vij
(ti × vij)|, (6)
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Figure 3. Illustration of the perceptual relations between primi-
tives. (a) Collinearity of two 2D primitives. (b) Co–colority of
three 2D primitives πi, πj and πk. In this example, πi and πj are
cocolor, so are πi and πk; however, πj and πk are not cocolor. (c)
Co–planarity of two 3D primitives Πi and Πj .

where vij is the vector (M i −M j); ti and tj denote the
vectors defined by the 3D orientations Θi and Θj , respec-
tively; and, proju(a) is the projection of vector a over vec-
tor u. The co–planarity relation is illustrated in Figure 3(b).

Co–colority: Two 3D primitives Πi and Πj are defined
to be co–color if their parts that face each other have the
same color. In the same way as collinearity, co–colority of
two spatial primitives Πi and Πj is computed using their
2D projections πi and πj . We define the co–colority of two
2D primitives πi and πj as:

coc(πi, πj) = 1− dc(ci, cj), (7)

where ci and cj are the RGB representation of the colors
of the parts of the primitives πi and πj that face each other;
and, dc(ci, cj) is Euclidean distance between RGB values
of the colors ci and cj . Co-colority between an edge prim-
itive π and a mono primitive πm, and between two monos
can be defined similarly (not provided here). In Figure 3(c),
a pair of co–color and not co–color primitives are shown.

Rigid-body motion: The rigid body motion Mt→t+∆t

associating any entity in space in the coordinate system of
the stereo set–up at time t to the same entity in the new coor-
dinate at time t+∆t is explicitly defined for 3D–primitives
(see Figure 4):

Π̂
t+∆t

i = Mt→t+∆t(Πt
i). (8)

3. Applications
In this section, the framework introduced in section 2 is

applied to a variety of tasks such as depth prediction at ho-
mogeneous image structures (section 3.1), scene interpreta-
tion (section 3.2), grasping (section 3.3) and object learning
(section 3.4).

3.1. Depth prediction

Edge primitives represent edge–like structures. It is
known that it becomes increasingly difficult to find corre-

t t+ td

A
A

A'

t t+ td

predicted
motion

predicted
motion

pi

t

pi

t+ td

p’

A''
Pi k®

Pi j®

p’’
Pi k®

Pi j®

Figure 4. Example of the rigid-body motion of a primitive (see
text).

(a) (b)

Figure 5. Depth prediction at homogeneous image areas using per-
ceptual relations between primitives. (a) The results, shown as a
disparity map only at the predictions, are from the scene in Figure
2. (b) A global dense stereo method (taken from [18]) that uses
dynamic programming to optimize matching costs.

spondences between local patches the more they lack struc-
ture. On the other hand, it is known that lack of structure
also indicates lack of a depth discontinuity [6, 8]. Moreover,
we have shown that based on the co-planarity relation, depth
at homogeneous image areas can be predicted (see Figures
5 and 6). Such a scheme can be used to ‘fill in’ the rep-
resentation at homogeneous areas using co–planar relation-
ships between edge–like primitives. In Figure 5, the homo-
geneous primitives inferred using such a scheme are shown
as a disparity map. Results on the same scene are shown for
a global dense stereo method (taken from [18]) that uses dy-
namic programming to optimize matching costs. Figure 5
shows that such depth prediction can be used as a depth cue
providing additional information in particular when image
structures are too weak to find correspondences. When con-
fronted with an image as in Figure 6, many dense depth esti-
mation algorithms either basically fail or assume implicitly
some linearity assumption that leads to rather bad recon-
struction. However, our method can ’interpret’ the curved
edges of the cylinder in order to reconstruct the round sur-
face.
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(a) (b)

Figure 7. Interpretation of a road and a circular traffic sign. (a) Input image from a stereo pair and the corresponding 2D primitives (b)
Interpretation of the scene.

(a) (b)

(c) (d)

Figure 6. Depth prediction for a round object. (a) Left stereo im-
age. (b) The top view of the results of 3D reconstruction from a
dense method (taken from [17]). The dense method estimates a
planar surface. The dynamic programming method from [18] pro-
duces similar results. (c)-(d) Two views of the results of our depth
prediction method. Note that (b)-(d) are snapshots from our 3D
visualization software.

3.2. Scene interpretation

Based on the co-linearity relation defined in section 2.2
we can define higher level entities, in the following called
groups, as sets of co–linear primitives (for details see [16]).
Although the groups of multi-modal primitives have higher

semantic meaning than individual primitives, they are not
enough to define an object or give an idea about the struc-
ture of a scene. Therefore, combinations of groups are more
suitable for interpreting a scene. As an example (see Figure
7), one lane of a road can be defined by a group of primi-
tives but this group is not qualified as a road, unless it is not
combined with the group that represents the opposite lane.
In that sense, the opposite lane is the one that lies on the
same plane with a certain distance and similar color. With a
similar reasoning, a circular traffic sign is interpreted by the
combination of circular pieces that shares the same center
and the plane with a similar enough color.

In this way we can make use of the appearance based
as well as geometric information in the primitives. Inter-
estingly, this allows for a close to textural description of
objects and scenes, e.g., the particular traffic sign in Fig-
ure 7 can be described by its geometric properties (curved
and co-planar groups with a certain proximity) as well as its
appearance based aspects (being blue). In this way, the in-
troduced representations can be seen as as an intermediate
step towards high level representations in which by express-
ing the semantic relations introduced in section 2.2, abstract
statements about the scene structure can be made.

3.3. Grasping

In [1], it has been shown how geometry, appearance and
spatial relations between multi-modal features can guide
early reactive grasping which is an initial ”reflex-like”
grasping strategy. A simple parallel jaw gripper was used
and five elementary grasping actions, called EGAs, were
associated to co-planar primitives. Two samples are shown
in Figure 8(a). The EGAs were tested in a simulation en-
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vironment [1] as well as in a real environment. It has been
shown that with a rather weak assumption of co-planarity
and hence without any a-priori object knowledge, success-
ful grasps could be generated which can then be haptically
verified and used further in a cognitive system (see section
3.4). Basically, plane hypotheses based on co-planar fea-
tures (as discussed in section 2) become associated to grasp
hypothesis (see Figure 8(b)). By making use of the addi-
tional relations co-colority and co-linearity, the number of
potential grasp hypotheses could be further reduced.

(a) (b)

Figure 8. Sample elementary grasping actions and grasping hy-
pothesis from [1] (a) Two sample EGAs (b) Two sample grasp
hypotheses.

Even more reliable grasping hypothesises can be asso-
ciated to object parts (see, e.g., [2]). To grasp cylindric or
conic objects, grasping options can be associated to a cir-
cle (see Figure 10). Here, instead of using second-order
relations between multi-modal primitives, 3D locations of
circles have been used to generate grasping hypothesises.

To extract a 3D circle, it is important to switch between
the 2D and the 3D aspects. The first step is locating the
3D circle by using the fact that a circle in 3D can be ap-
proximated by an ellipse in 2D. Although fitting an ellipse
to 2D data is easier than fitting a circle in 3D, an ellipse
does not give sufficient information about the center, radius
and the plane normal of the 3D circle. At that point, it is
possible to switch the dimension and obtain the missing in-
formation by processing the 3D features that correspond to
the 2D features which form the ellipse. Fitting a plane to the
3D features determines the normal of the circle. Finally, the
intersection of this plane and the line that passes from the
camera center and the multiplication of the pseudo-inverse
of the projection matrix and 2D ellipse center gives the cen-
ter of the circle. An example of the procedure is given in
Figure 9 (a-c).

Once a circle is found in 3D, four different grasp hypoth-
esis can be generated (see Figure 10). The first one uses the
center and the normal of the circle to place the gripper in-
side the circle and uses the radius to grasp the object from
inside. For the second hypothesis, a point on the circle is
calculated and this point is used to grasp the object from its
brim. For the third hypothesis, the center and the normal
of the circle is used for placing the gripper orthogonal to

(a) (b)

(c) (d) (e) (f)

Figure 9. Grasping of a cylindrical cup (a) Input left image (b)
Corresponding 2D primitives (c) Detected circle (d) Model of the
robot (e-f) The cup is grasped by the robot with respect to the
extracted information.

the circle normal, the radius is used to open the gripper and
the object is grabbed from the side. The last hypothesis is
similar to the first one but instead of inner side, the circle is
grasped from outer side. A sample grasp of the second type
is presented in Figure 9 (e-f).

Figure 10. Four different grasp hypothesises for circles

3.4. Learning objectness and object shape

The detection of features belonging to one individual ob-
ject is not a trivial task when a stereo system only observes
a scene since there is no decision criterion that a set of fea-
tures actually can be separated from the rest of the scene.
However, having achieved a successful grasps (as explained
in section 3.3), the robot has physical control over a poten-
tial object, and it can try to move it (see Figure 11). Since
the change of primitives under a rigid–body motion can be
described analytically (see section 2.2), predictions about
the change of primitives can be derived. Only primitives
that change according to these predictions are supposed to
be part of the object.3 In Figure 12, a number of represen-
tations are shown that have been extracted by this method
(for details, see [14]). First steps in using these object rep-
resentations for pose estimation and grasping are made in
[3].

3Note that the primitives belonging to the grasper change according to
the robot motion but they can be eliminated using the model of the grasper.
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Figure 11. The robot is doing a rotation to extract the 3D model of
a basket.

Figure 12. Sample objects and their related accumulated represen-
tation [14].

4. Discussion
The advantages of using a 2D or a 3D scene representa-

tion is highly dependent on the application and the context.
Both have their own advantages and disadvantages as pre-
sented in Table 1. By keeping these properties in mind, we
described a representation that preserves relevant aspects of
2D and 3D information to allow for switching between the
dimensions according to the actual requirements. We ex-
emplified the potential of this approach in four applications
of rather different nature, covering depth estimation at ho-
mogeneous areas, semantic scene description, grasping and
extraction of object representations.
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Local statistics of retinal optic flow for self-motion through
natural sceneries

Dirk Calow and Markus Lappe

Dept. of Psychology, Westf.- Wilhelms University, Fliednerstr. 21, 48149 Münster, Germany

Abstract Image analysis in the visual system is well adapted to the statistics of natural
scenes. Investigations of natural image statistics have so far mainly focussed on static fea-
tures. The present study is dedicated to the measurement and the analysis of the statistics
of optic flow generated on the retina during locomotion through natural environments. Nat-
ural locomotion includes bouncing and swaying of the head and eye movement reflexes that
stabilize gaze onto interesting objects in the scene while walking. We investigate the depen-
dencies of the local statistics of optic flow on the depth-structure of the natural environment
and on the ego-motion parameters. To measure these dependencies we estimate the mutual
information between correlated data sets. We analyze the results with respect to the varia-
tion of the dependencies over the visual field, since the visual motions in the optic flow vary
depending on visual field position. We find that retinal flow direction and retinal speed show
only minor statistical interdependencies. Retinal speed is statistically tightly connected to
the depth structure of the scene. Retinal flow direction is statistically mostly driven by the
relation between the direction of gaze and the direction of ego-motion. These dependencies
differ at different visual field positions such that certain areas of the visual field provide
more information about ego-motion and other areas provide more information about depth.
The statistical properties of natural optic flow may be used to tune the performance of ar-
tificial vision systems based on human imitating behavior, and may be useful for analyzing
properties of natural vision systems.

Keywords: optic flow, natural ego-motion, statistics, entropy estimation, mutual information estimation

1 Introduction

Often the brain has to analyze sensory signals which are ambiguous. Ambiguity arises from
the spatial and/or temporal properties of the perceptual sensors, from noise introduced
by the perceptual sensors, and from noise created by the environment. To (re)construct
perception, the brain may use statistically plausible predictions and/or statistical models
of the signal-sending environment. The resources of a signal processing system are usually
limited, and therefore the range of signals that can be processed is bounded. Non-linear
processing schemes that include knowledge of the statistics of the signals can enable the
system to be more sensitive for signals which occur very frequently, and to attach less value
to signals which are very unlikely to occur. Such statistically efficient processing schemes
restrict the limited resources of the system to the range of statistically probable signals.
Therefore, evolutionary adaptations of the perceptual areas of the brain to the statistics of
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natural environments are plausible. Effects of such adaptations are seen in gestalt laws (Elder
& Goldberg, 2002; Krüger & Wörgötter, 2002) and in efficient encoding schemes (Barlow,
1961; Laughlin, 1981).

In the visual modality, several researchers invested effort to reveal the statistics of natural
environments, and to link it with the neural representation of the sceneries (Laughlin, 1981;
Rudermann & Bialek, 1994; Atick & Redlich, 1992; Olshausen & Field, 1996; Krüger, 1998;
van Hateren & Rudermann, 1998; Zetsche & Krieger, 2001; Berkes & Wiskott, 2002; Simon-
celli & Olshausen, 2001; Betsch et al., 2004). Their investigations are largely restricted to
static attributes of natural scenes, however, even when dynamic stimulus material was used
(van Hateren & Rudermann, 1998; Betsch et al., 2004). Furthermore, the resulting statistics
are treated as independent of the position in the field of view. The properties of motion
signals elicited on optic detectors by ego-motion within natural sceneries strongly depend
on the position in the view field (Zanker & Zeil, 2005). To investigate the statistics of these
motion signals therefore requires an analysis of distributions of flow vectors with respect to
their visual field position.

Optic flow generated by self motion encodes much information about the direction of ego-
motion, the velocity, the distances of potential obstacles and the structure of the envi-
ronment (Gibson, 1950, 1966). Animals use this information for path planning, obstacle
avoidance, ego-motion control, and foreground-background segregation (see Lappe (2000b)
for an overview). The motion signals of the optic flow are processed in specialized motion-
processing brain areas (Albright, 1989; Saito et al., 1986; Duffy & Wurtz, 1991; Lappe et al.,
1996). It is likely that the motion-processing pathway of the brain uses statistical properties
of natural flow fields to efficiently encode natural optic flow, and to reconstruct the true
motion field from the motion signals in early motion detectors. We hypothesize that the
brain has involved mechanisms of extracting information from optic flow which benefit from
statistical dependencies of the elicited optic flow on the properties of the natural environ-
ment and natural motion situations. An investigation of the local statistical properties of
optic flow can be the starting point to reveal such connections.

The analysis of the statistics of optic flow may be undertaken on the true motion signals
(Ivins et al., 1999; Calow et al., 2004; Roth & Black, 2005), or on the signals obtained from
early motion detectors (Fermüller et al., 2001; Zanker & Zeil, 2005; Kalkan et al., 2005).
The latter approaches analyze the combination of properties of the motion field generated
by ego-motion with the properties of particular motion detectors. Since we are interested in
the statistical properties of the motion field itself we need to analyze the true motion signals.
Therefore, we need a large number of true motion fields generated by natural ego-motion
through a natural environment.

A method to collect a sufficient number of true optic flow fields was introduced in Calow
et al. (2004). Based on the Brown range image data base (Huang et al., 2000) true mo-
tion fields were generated by biologically plausible ego-motion and first results of the first
order statistics of retinal optic flow fields were reported. Roth and Black (2005) used this
method to investigate the statistics of optic flow and elementary optic flow components.
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Since their work mainly focused on aspects of machine vision, the ego-motion parameters
underlying the optic flow fields were obtained from ego-motions of hand-held or car mounted
cameras. The resulting statistics were treated as independent of the position in the field of
view. Our investigation is dedicated to the local statistics of the true retinal motion signals
occurring in biological vision during natural, human-like ego-motion. In natural locomotion,
eye movement reflexes stabilize gaze on objects of interest in the scene (Solomon & Cohen,
1992; Lappe et al., 1997; Niemann et al., 1999) such that natural ego-motion is always a
combination of body movement and eye movement. The combination of body movement,
eye movement, and depth structure of the visual environment determines the structure of the
optic flow on the retina (Lappe et al., 1999). Our investigation of the statistical properties
of the flow field is therefore based on a combination of walking and eye-movement reflexes.

We use the term local statistics to note the statistical properties of the distributions of retinal
velocities and their statistical dependencies on depth and ego-motion for certain positions in
the field of view. The correlations between motion signals of different positions are not part
of our notion of local statistics.

We see the purpose of our study in providing basic information and quantitative data on
the statistics of retinal motion signals. This information can be used to predict sensitivity
ranges of neurons in the motion processing pathway of the brain. Future work will focus
on the examination of the hypothesis that these neurons efficiently encode distributions of
naturally occurring retinal motion signals. The knowledge of the statistics is crucial for that
purpose. Furthermore, the knowledge of the statistical properties of retinal motion signal is
an important tool in creating experimental paradigms that focus on natural motion stimuli.
Comparisons between natural and unnatural motion situations are necessary to reveal how
the motion processing pathway is adapted to the statistics of the natural environment. Our
investigation can also provide prior knowledge for creating probabilistic models of the motion
processing pathway of the brain based on Bayesian inference (Weiss & Fleet, 2001).

Since the local statistics of optic flow are tightly linked to the statistics of the depth structure
of natural scenes and to the statistics of the ego-motion parameters the information about the
depth map of the current scene and the ego-motion situation is encoded in the retinal flow.
However, the generation of optic flow maps from a five dimensional parameter space (walking
speed, heading, depth, and depth of the fixation point) to a two dimensional flow vector
(cf. equations (5) and (6)). Therefore, the information about the underlying parameters
is condensed in the flow vector and cannot be extracted from an individual flow vector
directly. Recovery of heading, for instance, requires the combined information from several
flow vectors (Longuet-Higgins & Prazdny, 1980). However, different areas in the field of
view show different statistical dependencies of the components of the optic flow on heading
and depth. By focussing the analysis on these areas the brain may gain instant access to
particular parameters regarding the other parameters as fixed and their variation as noise.

Our analysis starts with the measure of dependence between the random variables retinal
speed and direction for a set of positions in the field of view. Then we analyze the properties
mean, standard deviation, skewness, kurtosis, and negentropy of the distributions of speed
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and direction. The results provide the most important properties of the distributions de-
pending on the position in field of view. Finally, we investigate the statistical dependencies
between the distributions of optic flow and the distributions of depth in the scene, depth of
the fixation point, and heading. To put the influence of heading and scene structure into
context, the same analysis is performed with two other sets of optic flow fields. One set
is generated under the assumption that no gaze stabilization is executed and therefore no
rotation occurs. The second set provides a baseline for comparison of the influence of the
scene structure. In this set, the depth values are randomly mixed. Thus, the scene structure
is abolished but the depth statistics do not differ for different positions.

2 Methods

2.1 Construction of retinal flow fields

In this section, we describe the preparation of retinal flow fields in a sufficient number for
the statistical analysis. The calculation of retinal optic flow fields relies on the knowledge
of the depth map of a variety of natural scenes. We will explain how to obtain ego-motion
parameters and how to construct flow fields from the depth map and the ego-motion.

We generate flow fields under three different conditions. One condition is regarded as nat-
uralistic and combines naturalistic ego-motion, which includes gaze stabilization, through
natural scenes (natural condition). Another set of flow fields relies on the same set of natu-
ral scenes and heading directions but without gaze stabilization (non-stabilized condition).
In this set, gaze is directed to the same objects in the visual field as in the natural condition
but is not stabilized on that object, i.e. does not conteract the motion induced by the forward
movement. The third set of flow fields is generated from the same naturalistic ego-motion
parameters, including gaze stabilization, but each scene is mixed in depth by exchanging the
depth values between randomly selected pairs of positions (mixed depth condition). This
procedure ensures that the overall distribution of depth values is natural, but the differences
in depth statistics for different positions in the visual field disappears.

2.1.1 Database.

We use the Brown Range Image Database, a database of 197 range images collected by
Ann Lee, Jinggang Huang and David Mumford at Brown University (Huang et al., 2000).
The range images are recorded with a laser range-finder with high spatial resolution. Each
image contains 444 × 1440 measurements with an angular separation of 0.18 degree. The
field of view is 80 degree vertically and 259 degree horizontally. The distance of each point
is calculated from the time of flight of the laser beam, where the operational range of the
sensor is 2− 200m. The wavelength of the laser beam is 0.9µm and lies in the near infrared
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region. Thus, the data of each point consist of 4 values: the distance R, the azimuth angle φ,
the zenith angle θ, and a value for the reflected intensity of the laser beam. The location of
the source of the laser beam is 1.5m above the ground. Figure 1 shows a typical range-image
projected onto the φ− θ plane. It can be seen that the intensity of the reflected laser beam
characterizes the properties of the reflecting surfaces sufficiently well. The objects in the
scene are clearly visible, and the image resembles a grey level picture of a fully illuminated
scene at night. The data are provided in spherical coordinates R, φ, θ. The three dimensional
Euclidian coordinates from the standpoint of the laser range finder can be easily calculated
by (X, Y, Z) = (R cos(φ) sin(θ), R cos(θ), R sin(φ) sin(θ).

2.1.2 Retinal projection.

The knowledge of the 3D coordinates of each image point allows the calculation of the true
motion of that point for any given combination of translation and rotation of the projection
surface. As we are interested in the statistics of retinal projections, we consider as the retina
a spherical projection surface with the radius 1. All coordinate systems we will use in the
following are attached to the center of the projection surface and therefore the coordinates
of the data delivered by the data base have to be transformed in the perspective of the
projection surface. In Euclidian coordinates, the X-and Y -axis are right and up, and the
Z-axis is perpendicular to the X-Y plane. The value of the Z coordinate of any point in the
scene is the depth of that point from the perspective of the projection surface. The most
simple description of optic flow vectors on the sphere is given by the following notation. Let
ε be the angle of eccentricity describing the meridians of the sphere and σ the rotation angle
describing the circles of latitude rotating counter clockwise. The focal point is defined by
ε = 0. The meridians and the circles of latitude are coordinate lines, and every vector v on
the sphere has the components v = (vε, vσ) in the respective local orthonormal coordinate
system. The velocity v of a point moving over the sphere described in terms of the temporal
derivatives of ε and σ is v =

(
dε
dt
, sin(ε)dσ

dt

)
. Although the spherical coordinates ε, σ already

sufficiently provide the description of the sphere, we want to use a second spherical coordinate
system to denote positions on the projection surface, in terms of which we are going to plot
our results. Each position on the sphere is described by the azimuth φ̃ and the elevation θ̃,
where the projection of a point in the scene onto the sphere is governed by the relationship
in equation

X

Z
=

sin(φ̃)

cos(φ̃)
=

sin(ε)

cos(ε)
cos(σ)

Y

Z
=

sin(θ̃)

cos(φ̃) cos(θ̃)
=

sin(ε)

cos(ε)
sin(σ).

Since, positions of the upper and the right visual field are denoted by positive values of θ̃ and
φ̃ respectively and positions of the lower and left visual field are denoted by negative values of
θ̃ and φ̃ respectively, the reader can easily discern what positions on the sphere are pointing
to the right, left, up and down from the perspective of the observer. The flow field emerging
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on a moving sphere can be easily extracted by a simple transformation from the well known
flow field (vx, vy), which would be generated on a moving plane with internal coordinates
(x, y) = (X/Z, Y/Z) (Longuet-Higgins & Prazdny, 1980). The flow field generated on a
plane is described by

dx

dt
= vx =

1

Z
(−Tx + xTz) + (xyΩx − (1 + x2)Ωy + yΩz)) (1)

dy

dt
= vy =

1

Z
(−Ty + yTz) + (−xyΩy + (1 + y2)Ωx − xΩz)). (2)

The transformation rule is

vε = cos2(ε)(cos(σ)vx + sin(σ)vy) (3)

vσ = cos(ε)(cos(σ)vy − sin(σ)vx). (4)

2.1.3 Ego-motion parameters.

To calculate the flow field from the scene structure we need the motion parameters of the
projection surface. The ego-motion of the surface is fully described by the translational
velocity vector of the surface T = (Tx, Ty, Tz) and the vector of rotation Ω = (Ωx,Ωy,Ωz)
in the Euclidian coordinate system attached to the projection surface. The translation T of
the surface can be further split up in the parameters translational or walking speed ||T || and
heading (Hφ, Hθ), which are azimuth and elevation denoting the direction of the translational
velocity vector of the surface:

T = (Tx, Ty, Tz) = ||T ||(cos(Hφ) sin(Hθ), cos(Hθ), sin(Hφ) sin(Hθ)).

Natural ego-motion within the scenes involves eye movements which stabilize the gaze on
environmental objects (Lappe, 2000a; Lappe et al., 1998). Gaze stabilization keeps the point
of interest or the gaze attracting object in the center of the visual field and causes the motion
in the center of view to be zero. It can be easily extracted from equations (1) and (2) that
the associated rotation depends on the translation by Ω = 1

Zf
(Ty,−Tx, 0), where Zf denotes

the depth of the point at which gaze is directed. Under this assumption (3) and (4) can be
transformed to

vε =
1

Z

(
cos(ε) sin(ε)Tz +

(
Z

Zf

− cos2(ε)

)
(cos(σ)Tx + sin(σ)Ty)

)
(5)

vσ =
1

Z
cos(ε)

(
Z

Zf

− 1)

)
(cos(σ)Ty − sin(σ)Tx). (6)

By (5) and (6) the parameters governing the optic flow at a certain position are the walking
speed ||T ||, the heading (Hφ, Hθ) and the depth-structure of the scene determined by the
depth Z of the point in question and the depth of the fixation point Zf .

For the condition without gaze stabilization the concerning retinal flow can be extracted
from (5) and (6) by assuming the observer gazes towards a point in infinity, i.e. Zf → ∞,
and thus Ω and the term Z/Zf vanish.
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Since, for higher walking speed the distribution is linearly shifted to higher speed values,
there are only trivial correlations between the motion signals and walking speed. Therefore,
we restrict our analysis to flow fields generated by a walking speed of ||T || = 1.4 meter per
second.

Finding plausible ego-motion parameters (Hφ, Hθ) and depth of fixations Zf for the respec-
tive scene requires to search for feasible walking directions within the scene and to extract
probable gaze directions. The walking direction within the scene combined with the gaze
direction provides the parameters of heading (Hφ, Hθ). Furthermore, if the direction of fixa-
tion is given, the depth of fixation can be extracted from the point in the laser range image
that the gaze direction is associated to.

To determine possible walking directions within a range image we search for areas which are
free from obstacles in a depth of at least 3m and a width of 0.7m. This criterion gives us a
set of walking directions for each scene, which are considered to be equally likely.

To obtain gaze directions that we can use to generate gaze stabilization movements we mea-
sured eye movements of observers who viewed images, which were generated from segments
of the range images centered on the walking directions. The images are projected onto a
36.5cm×27.5cm plane with a focal length of 30cm (white frame in Figure 1 A). Six subjects
viewed these pictures on a 17 inch computer monitor with the head stabilized on a chin rest
30cm in front of the monitor. Pictures were shown for 1 second in immediate succession to
give the impression of a changing environment the subject is moving through. Gaze fixation
points were measured by an eye tracking system (Eye Link II). The first fixation for each
picture was rejected because it might be partially driven from the preceding picture. The
subsequent fixations were used as probable gaze directions for the statistical analysis. Al-
though, the subjects are not actually walking through the real scenes, and therefore have no
access to the true color, disparity and other factors, which might influence gaze attraction,
the arrangement of objects and surfaces populating the scene and the objects itself are well
recognizable (Figure 1 A). Furthermore, humans are usually familiar with that sort of scenes
and this world knowledge ensures that the scenes are instantly identifiable as street scenes
or forest scenes, and that gaze is instantly attracted to the usual objects in such scenes.
Figure 1 B shows the distribution of gaze directions while viewing the scenes. The points
are plotted in spherical coordinates (φ, θ) and are centered on the direction of walking used
for the flow field calculations.

To consider all aspects of human walking we also take bouncing and swaying of the head
during walking into account. Bouncing and swaying of the head while walking is part of
the complex oscillatory motion pattern of during walking (Imai et al., 2001). The position
of the head during walking can be modeled as sinusoidal time functions. To obtain typical
values for the amplitude and period we measure the head position of one human subject
while walking. The walking velocity of the subject was 1.4 meter per second. The height of
the subject was 1.80 meter. The head-position was measured by a position tracking system
(Motion Star). We approximate the properties of vertical and horizontal movement of the
head as follows. The vertical head position has a period of 0.6 second and an amplitude of
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0.02 meter. The horizontal head position has a period of 1.2 second and an amplitude of
0.02 meter as well. The velocity of the head during walking can be obtained by the first
temporal derivative of the horizontal and vertical head position. The actual horizontal and
vertical movement of the head for a certain motion situation is picked up at a randomly
selected time and is added to the preliminary determined ego-motion parameters such that
the gaze of the eye towards the fixation point is stabilized also during bouncing and swaying
of the head.

Since the actual combination of walking direction, gaze direction and head movement is
linked to the environment and to the task, and since the simulated components of ego-
motion might not be generally independent, our assumed ego-motion is an approximation to
actual ego-motion and might not match actual ego-motion in all details. But the simulation
matches the main components of human ego-motion and allows us to combine naturalistic
ego-motion parameters with the true depth information data provided by the range image
database.

We mirror each scene and the respective heading on the vertical plane (Y-Z plane). This
procedure of mirroring the scene attaches to each position in the field of view the depth value
of its counterpart in the opposite hemisphere and therefore doubles the set of depth data
points for each position. Simultaneously mirroring the heading ensures that ego motion is
still in the direction of the obstacle free corridor.

2.1.4 The retina

The flow fields we finally consider are elicited on the inside of a section of a sphere, in which a
grid of motion sensors is affixed. The field of view of this retina is set to 90◦ horizontally and
58◦ vertically. This field of view is subdivided in pixels, which can be referred to as motion
sensors, with a resolution of 0.36◦× 0.36◦ yielding a grid of 250× 160 pixels. As the angular
separation of the range images is 0.18◦, one pixel covers up to 4 data points. The depth values
Z = R sin(φ) sin(θ) from these data points are averaged. The mean depth value is assigned
to the pixel in question. Thus, we reduce the original resolution provided by the laser range
images. This procedure is necessary, because the pixel grid of the retina is sliding over the
pixel grid of the laser range image and mostly does not match the original pixels. Therefore,
reducing the resolution ensures that all pixels of the retina receive appropriate motions
signals. The flow vector attached to a pixel depends on the depth value, the translation and
rotation components of the ego-motion and the visual field position of the pixel. The flow
vectors of all pixels of an image provide the measurement of the true retinal flow field for
this gaze direction, ego-motion, and scene. Figure 1 C shows an example of a true retinal
flow field.
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2.2 Statistical analysis

We constructed 7136 different flow fields for each of the three conditions naturalistic, no gaze
stabilization, and mixed depth map. To examine the local statistics of these flow fields we
collect for each scene, motion situation, and pixel position the data sets which comprises the
retinal velocity, the depth at the respective position, the depth of fixation, and the heading
of the respective ego-motion. Examples of the distributions of retinal velocities can be seen
in Figure 2.

The analysis of the local statistics of optic flow is divided into two parts. The first part is
dedicated to the examination of the distributions of optic flow and how strong the statistical
properties of which depend on the positions in the field of view. The investigation considers
the polar optic flow components retinal flow direction and retinal speed and starts with
the measure of the statistical dependence of these two variables. Although there are slight
differences in the degree of statistical dependence for the different conditions, it turns out
that flow direction and retinal speed are largely statistically independent for all conditions.
Therefore, the further analysis is based on the extracted one-dimensional distributions of
retinal speed and retinal flow direction. For each position in the field of view we measure
the mean, the scatter, the skewness, the kurtosis and an estimation of the negentropy for
the distributions of retinal speed and retinal flow direction.

The second part addresses the problem of the statistical dependence of the variables retinal
direction and retinal speed on the particular parameters depth, depth of fixation point,
and heading. The statistical correlations are not purely linear, and nonlinear statistical
dependencies play an important role. This can be seen in the exemplary scatter-plots (Figure
3), which show the extracted data for the distribution of retinal speed and the inverse of
depth (Figure 3 A), the retinal speed and the elevation heading component (Figure 3 B), and
the retinal speed and the azimuth heading component (Figure 3 C) at the visual field position
(−5◦,−18◦). All scatter plots show that a statistical analysis based on linear correlation is
not sufficient. For example in the scatter plots Figure 3 A and C a quadratic correlation
seems to underlie the data set and in the scatter plot Figure 3 B a correlation of degree
three provides the main contribution. However, despite the very different kinds of statistical
dependencies for different data sets and for different positions we would like to compare
the degree of dependence the retinal flow has on the different parameters. Information
theory provides the notion of mutual information between random variables. The mutual
information is a measure of the difference between the joint probability density function
(PDF) of the random variables and the PDF which would appear if the random variables
were statistically independent. Since the mutual information only vanishes if the random
variables are fully statistically independent, the measure of the mutual information takes
all kinds of statistical dependencies into account and is useful to investigate the degree of
dependence between random variables. However, the mutual information can range from
zero to infinity. Therefore, we are going to define a generalized dependence coefficient in
terms of the mutual information between data sets which will be bound between values 0
and 1. This definition is motivated by the mathematical relation between mutual information
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and the linear correlation in the case of purely linear statistical dependency.

2.2.1 Polar representation of retinal flow vectors

The retinal velocity at a certain position in the field of view is a two dimensional vector
(vε, vσ). Therefore, the velocity distributions are distributions of two dimensional random
variables. The random variables we choose for further analysis are the polar coordinates
retinal speed v and retinal direction φdir. We will show that these random variables are
largely independent. Thus, our analysis of the local statistics of retinal velocities will be
separately performed on these two random variables:

v =
√
v2

ε + v2
σ,

φdir =


arccos

(
vε√

v2
ε +v2

σ

)
; vσ ≥ 0,

− arccos

(
vε√

v2
ε +v2

σ

)
; vσ < 0.

2.2.2 Estimating the properties of the distributions of speed and direction

To illustrate the different properties of the distributions of speed and direction for different
positions in the visual field we measure the mean (EX), the scatter (DX), the skewness
(M3X), the kurtosis (M4X), and estimate the negentropy (JX). For the sake of complete-
ness, we list the well known corresponding formulas to estimate these parameters from an
empirical data set X = {xi ∈ R}i=1,2,..,N :

EX =
1

N

N∑
i=1

xi

DX =
√
M2X =

√√√√ 1

N − 1

N∑
i=1

(xi − EX)2

M3X =
1

N−1

∑N
i=1(xi − EX)3

DX3

M4X =
1

N−1

∑N
i=1(xi − EX)4

DX4
− 3.

DX is a measure for the width or the spreading of the data, M3X and M4X are measures
of the difference between the empirical distribution and the Gaussian distribution. M3X
measures the asymmetry and M4X is a measure for the flatness of the distribution. A
negative value of M4X means the distribution is more flat than a Gaussian and has shorter
tails. A positive value of M4X means the distribution has a peak higher than a Gaussian
and longer tails.
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Mean, scatter, skewness and kurtosis take only the first four moments of a distribution
into account. To obtain a compact measure to assess the difference between an empirical
distribution and the Gaussian distribution with the same mean and scatter we estimate
the negentropy from the empirical distribution. Let P (x) be the probability density function
(PDF) of a random variable X. The negentropy J(X) is defined as the difference between the
differential entropy of the Gaussian H(Xgauss) and the actual differential entropy H(X) :=
−

∫
suppP

P (x) log2(P (x))dx

J(X) = H(Xgauss)−H(X) =
1

2
log2(e2πDX

2)−H(X),

where e is the Euler number. Since a Gaussian distribution has the maximal entropy for a
given mean and scatter, J(X) is always nonnegative and vanishes only if X is a Gaussian
distribution. The estimation of the negentropy of a distribution requires the estimation of
the differential entropy.

2.2.3 The measure of dependence and the estimation of differential entropy

The analysis of the statistical interdependence between the optic flow components retinal
direction and retinal speed and the statistical dependencies of the optic flow components on
the parameters depth, depth of fixation point and heading components requires estimating
the mutual information from two-dimensional and three- dimensional data sets. The analysis
of the properties of the distributions of retinal speed and retinal direction furthermore needs
an estimation of the differential entropy from one-dimensional data sets.

The mutual information mI(X1, X2, ...Xn) between (possibly more-dimensional) continuous
random variables Xi with minor PDF’s Pi(xi) and joint PDF PX(x1, x2, ...) is defined by

mI(X1, X2, ...) =

∫
Rm

PX(x1, x2, ...) log2

(
PX(x1, x2, ...)

P1(x1)P2(x2)...Pn(xn)

)
dmx,

=
n∑
i

H(Xi)−H(X1, X2, ...), (7)

where m =
∑n

i=1 dim(Xi) and

H(X) = −
∫
PX(x) log2(PX(x))dmx; m = dim(X) (8)

is the (differential) entropy for the random variable X. The mutual information is always
nonnegative, and zero if and only if P (x1, x2, ...) = P1(x1)P2(x2)...Pn(xn), i.e. the Xi are
mutually independent random variables. In this study, we deploy the method of the k-
nearest neighbors distances to estimate the differential entropy (Kozachenko & Leonenko,
1987) and the modification to estimate mutual information (Kraskov et al., 2004). Let
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Ψ = {ψi}i=1,2,...,N be a m-dimensional data-set and let P̂Ψ be an estimator for the actual
PDF PΨ. The differential entropy (8) can be estimated by

H(Ψ) ≈ Ĥ(Ψ) = − 1

N

N∑
i=1

log2(P̂Ψ(ψi)). (9)

Let εi be the minimal radius of the sphere centered at ψi ∈ Ψ within the k nearest neighbors
of ψi are located, for large N and large k (but k << N), PΨ(ψi) can be estimated by

P̂Ψ(ψi) =
1

Vuεmi

k

N
, (10)

where Vu is the volume of the unit ball. Equation (10) leads directly to an estimate of the
differential entropy

Ĥ(Ψ) = log2(N)− log2(k) + log2(Vu) +
m

N

N∑
i=1

log2(εi). (11)

For smaller N and/or smaller k equation (10) gives a rather bad estimate of PΨ and equation
(11) must be replaced by

Ĥ(Ψ) = (ψ(N)− ψ(k))/ log(2) + log2(Vu) +
m

N

N∑
i=1

log2(εi),

where ψ is the digamma function (see Kraskov et al. (2004)). Let now Ψ = (Ψ1,Ψ2) =
{(ψ1i

, ψ2i
}i=1,2,...,N be a (m1 + m2)-dimensional data set for which we wish to estimate the

mutual information mI(Ψ1,Ψ2) ≈ Ĥ(Ψ1)+Ĥ(Ψ2)−Ĥ(Ψ). Whereas Ĥ(Ψ) can be estimated
by equation (11), to use the same distance scales in the joint and the minor spaces and to
avoid any biases the estimation of the differential entropies Ĥ(Ψ1) and Ĥ(Ψ2) have to be
modified in the following way (see Kraskov et al. (2004)). Let εi be the minimal radius of
the sphere which is centered at ψi ∈ Ψ and which within the k nearest neighbors of ψi are
located, then k1i

is the number of data located within the sphere with radius εi centered at
ψ1i

in the space Ψ1 and k2i
is the analog number of data around ψ2i

. The estimation of the
differential entropy Ĥ(Ψ1) is modified by

Ĥ(Ψ1) = log2(N) +
−1

N

N∑
i=1

log2(k1i
+ 1) + log2(V1u) +

m1

N

N∑
i=1

log2(εi).

Analogous calculations are performed for the estimation of Ĥ(Ψ2). For the estimation of
mutual information between more than two random variables the method can be easily
extended.

For all mutual information estimation performed in this study we fixed the number of nearest
neighbors by k = 0.005N . Whereas N ranges between 6000 and 7136, the number of nearest
neighbors takes values between 30 and 35.
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Rank ordering of data sets The dependent components of an empirical data set are
usually measured in different units and have different scales. Large differences in scale can
cause errors in the estimation of mutual information. Note that the mutual information (7)
is preserved under any differentiable transformation f : Rm −→ Rm of the m-dimensional
components. To conform the scales of the components of the data sets the components are
transformed to a uniform distribution by rank ordering.

Let PX(x), x ∈ Ω ⊆ R be the PDF of a one-dimensional random variable X. Let H be the
Heaviside step function. The transformation which turns X into a uniform random variable
is

fX(x) :=

∫
Ω

H(x− x̃)P (x̃)dx̃. (12)

Let {ψi ∈ R}i=1,2,...,N be a one dimensional data set. Then (12) leads directly to the approx-
imation of the uniforming procedure by

fΨ(ψi) :=
1

N

N∑
j=1

H(ψi − ψj), (13)

which is referred to as rank ordering. To perform the uniforming procedure for a two-
dimensional data set the first component is rank ordered according to equation (13). The
resulting data set can then be divided into stripes of the same width comprising the same
number of data. Regarding each stripe as a one-dimensional data set, the stripes are rank
ordered by equation (13) again. Although uniforming dissolves the internal dependence struc-
ture of the two dimensional random variable, the mutual information between the uniformed
two dimensional random variable and a separately rank ordered third random variable is not
affected.

The definition of the generalized dependence coefficient Suppose the random vari-
ables X and Y have the following joint PDF:

P (x, y) =
1

2πσ1σ2

exp

(
− x2

2σ2
1

)
exp

(
−(x− y)2

2σ2
2

)
, (14)

and PX and PY are the PDFs of the constituents. There is a simple relationship be-
tween the linear correlation coefficient C(X, Y ) and the mutual information mI(X, Y ) =∫

suppP
P (x, y) log2

(
P (x,y)

PX(x)PY (y)

)
dxdy:

C(X, Y )2 =
σ2

1

σ2
1 + σ2

2

(15)

mI(X, Y ) =
1

2
log2

(
σ2

1 + σ2
2

σ2
2

)
(16)

C(X, Y )2 =
σ2

1

σ2
1 + σ2

2

= 1− 2(−2mI(X,Y )). (17)
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Motivated by equation (17) we define for a multi-dimensional random variable Ψ a normed
mutual information

mInormed(Ψ) := 1− 2(−2mI(Ψ)), (18)

which takes values between 0 and 1, and which is referred to as a generalized dependence
coefficient. Recall that equation (17) is only valid for linear correlations and if all constituent
random variables are gaussian-distributed. However, we will use the definition (18) to con-
dense the estimated mutual information in a value between 0 and 1 for a more compact
presentation.

3 Results

3.1 Statistical interdependencies between retinal direction and
retinal speed

Figure 4 shows the estimated normed mutual informations mInormed(Φdir, V )) between the
distributions of direction and speed for all positions in the field of view in each of the
three conditions. The values of mInormed(Φdir, V ) for the natural condition (Figure 4 A)
range from 0.04 to 0.19, with the peak in the center of the visual field. These values are
rather low suggesting that direction and speed are largely independent from each other at
all positions in the visual field. This result, however, is not a direct consequence of equations
(3), (4), (5), and (6) but rather depends on the statistical properties of the motion and depth
parameters and their combination in walking and gaze stabilization. This can be seen from
the comparison with the other two conditions.

In the condition with no gaze stabilization (Figure 4 B),mInormed(Φdir, V ) ranges from 0.05 to
0.3 in the lower visual field and from 0.04 to 0.2 in the upper visual field. The interdependence
between retinal speed and direction is increased for a domain of the lower visual field right
under the horizontal line. This shows that the ego-motion situation influences the dependence
structure of retinal speed and direction.

In the third condition (mixed depth map, Figure 4 C), mInormed(Φdir, V ) varies between
0.08 and 0.16 accross the visual field. Thus, randomization of the depth structure keeps the
statistical interdependence between retinal speed and direction on the same level as in the
natural condition. Thus, the depth structure exerts less influence on the interdependence be-
tween retinal speed and direction than the ego-motion situation. However, a depth structure
with very different statistics may affect the interdependence between direction and speed.
For instance, if the scene contains only objects in great distances from the observer the
retinal motion signals are mostly caused by the rotational component of ego-motion. This
produces a higher statistical interdependence between direction and speed. Therefore, the
low statistical interdependence between direction and speed of the optic flow in the natural
condition is a particular property of ego-motion through natural settings.
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The statistical interdependence between retinal direction and speed is not dependent on
walking speed. Variation of walking speed only scales the retinal speed by a proportinality
factor. However, a statistical variation of walking speed between different motion situations
would evidently further diminish the level of statistical interdependence between retinal
direction and speed by introducing an additional statistical variance which solely affects the
statistics of retinal speed.

In the remainder of our analysis we consider the statistical properties of the distributions of
retinal direction and speed separately. This is justified by the low statistical interdependence
between direction and speed in the natural condition and facilitates the understanding and
interpretation of the results.

3.2 Properties of the distributions of speed and directions

Figure 5 shows some examples for kernel-based estimates of the PDFs of direction (measured
as deviations from the radial direction) and speed (Parzen, 1962; Silverman, 1986). All
examples are from the natural condition. They show different positions in the left visual field.
The distributions of the right visual field are essentially mirror-symmetric. The estimated
distributions of speed appear similar to logarithmic Gaussian distributions. We therefore
measure the skewness, kurtosis and negentropy for the logarithmic values of speed rather than
for the speed itself to reveal how close the speed distributions are to logarithmic Gaussian
distributions. We note the reference to the logarithm of a random variable by the prefix log
(for example log-kurtosis).

3.2.1 Properties of the distributions of directions

Figure 7 shows the visual field maps for mean, scatter, skewness, kurtosis, and negentropy for
the distributions of direction in the three conditions. First, we discuss the results concerning
the natural condition (column A). The top panel (Figure 7 A1) shows the mean of the
distributions of direction for all positions in the field of view. The mean deviates from the
radial direction by up to 12 degrees. The deviation from radial is high near the center of
the field of view and decreases towards the periphery. The variations of the deviation with
eccentricity and the absolute values of deviation are very similar in the upper and lower visual
fields. The visible cloverleaf structure in the plot shows that the means of the direction in
each quadrant are distorted towards the vertical direction: the means are negative in the left
upper visual field and positive in the left lower visual field, and vice versa for the right visual
field. A similar structure occurs in the map of the skewness of the direction distributions
(Figure 7 A3). This means that the direction distributions have longer tails at the side where
the directions are closer to the vertical direction. Consequently, the skewness vanishes for
the positions on the horizontal and vertical meridian.
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The shifts of the means and the distortions of the distributions are mainly caused by the
interplay between the mathematics of the projection and the properties of the distribution of
headings. The distribution of headings has a higher variance for the horizontal component
than for the vertical component (cf Figure 1 B). When heading is varied symmetrically
around the center along the horizontal meridian the flow vectors induced at position along
the 45 degree diagonal in the lower visual field are distributed asymmetrically around the
radial direction (Figure 6). As our flow fields include eye rotations to stabilize gaze on an
attended object in the scene, the flow vectors are additionally influenced by the properties of
the distributions of Z

Zf
(see Equations (5) and (6)). Z

Zf
takes values between 0 and infinity.

The distribution of Z
Zf

is right skewed. The result is a further skewing of the direction
distributions. Therefore, the extend to which the resulting distributions of flow direction
are skewed depends on the interplay between the statistics of the depth structure and the
statistics of the ego-motion parameters. The different depth statistics in the upper and lower
visual fields lead to the differences in the magnitude of skewness in the upper and the lower
visual field in Figure 7 A3.

Figure 7 A2 shows the scatter of the directions around the mean. The scatter is maximal
(about 60 degrees) at the center of the field of view and decrease to around 10 degrees
in the periphery. In combination with the mean the scatter map shows that the direction
distributions in the periphery become more radial. There is not much difference between the
upper and the lower visual field.

The plots of kurtosis and estimated negentropy (Figure 7 A4 and A5) show that in large areas
of the lower visual field the kurtosis and negentropy are very small (from -0.4 to 2.0 and 0.02
to 0.08 respectively). Kurtosis and negentropy increase (up to 17 and 1 respectively) near
the horizontal meridian. However, also comparatively small deviations from zero kurtosis
and from zero negentropy, such as those in the lower visual field, give a significant difference
of the distribution from a Gaussian. For example, the distribution at position (−30,−15)
in Figure 5 A has a kurtosis of 0.44, a negentropy of 0.05, and a skewness of 0.55, and is
clearly different from a Gaussian distribution. Position (−30, 15) in Figure 5 A provides an
example for a distribution with rather large values of kurtosis (6.54), negentropy (0.28), and
skewness (−1.28).

We conclude that the distributions of the directions for positions of the lower visual field are
rather close to Gaussian distributions and that extreme non-Gaussian distributions occur
near the horizontal meridian.

A comparison with the direction distributions in the non-stabilized condition (second col-
umn) and the mixed depth condition (third column) shows the influence of the statistics of
the ego-motion parameters and the depth on the distributions of retinal directions. Whereas
the cloverleaf structure in the mean exists in all conditions, the patterns of scatter, skewness,
kurtosis and negentropy show clear differences between the conditions. In the non-stabilized
and mixed depth conditions, there are no differences between upper and lower visual field.
Kurtosis and negentropy do not take as high values as some domains of the visual field in the
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natural condition. Although the distributions in both conditions are similar skewed, natural
motion parameters in combination with natural scenes have a cumulative effect on skewing
for some regions of the visual field.

3.2.2 Properties of the distributions of retinal speed

The Figure 8 shows the visual field maps for mean, scatter, skewness, kurtosis, and negen-
tropy for the distributions of retinal speed for the three conditions. Figure 8 A1 shows the
mean of retinal speed for all position in the field of view in the natural condition. Mean reti-
nal speed and scatter is zero at the center of view because of the assumed gaze stabilization.
Mean retinal speed increases in the periphery up to 20 degrees per second. Note that the
absolute values of speed would scale with walking speed, which was a constant 1.4 meter per
second in our calculations, but only by a constant factor for all flow speeds. Hence, walking
speed does not change the distribution over the field of view.

The increase of the mean speed is larger for the lower visual field than for the upper visual
field. The scatter, ranging from 0 to 11 degrees per second, on the other hand, increases
more in the upper visual field than in lower visual field. These differences between mean
and scatter show that the retinal speeds are faster and more uniform in the lower visual field
and slower and more variable in the upper visual field.

Since the appearance of the estimated distributions for speed suggests that these distributions
are Gaussians on a logarithmic scale, we measured the skewness, kurtosis and negentropy
for the logarithms of speed. This measures show how close the speed distributions are to
logarithmic Gaussian distributions. Figure 8, Panels A3, A4 and A5 show the estimated
values for the log-scatter, log-kurtosis and log-negentropy. These values are largely uniform
over the visual field. The log-skewness ranges from −0.8 to 0.8, the log-kurtosis from 0.5 to
3, and the estimated log-negentropy from 0.03 and 0.11. Although these values are rather
low, for each position either the skewness, or the kurtosis, or both values are significantly
different from zero, which we tested by the calculating the standard errors and using the re-
sulting error bars (approx. two times the standard error) as significance criterion. Therefore,
the distributions of retinal speed are significantly different from log-Gaussian distributions.
However, the small values of log-skew, log-kurtosis and log-negentropy may for practical
purposes allow to model the distributions of retinal speed by log-Gaussian distributions.

The distributions in the non-stabilized condition (see Figure 8 column B) look very similar
to those for the natural condition except for positions close to the center of view. Close to
the center of view the mean and scatter of retinal speed do not vanish in the non-stabilized
condition and do not fall below 1.3 degree per second and 1.6 degree per second, respec-
tively. In the mixed depth condition, the distributions show a complete different pattern
(see Figure 8 column C). The increases of the mean and scatter towards the periphery are
not as pronounced as in the other conditions and do not rise about 8 degree per second and
7 degree per second, respectively. Log-skewness takes only negative values across the visual
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field. Log-kurtosis is smaller than in the other conditions. Log-negentropy is in the same
range as in the natural and non-stabilized condition. These results suggest that the depth
statistics has a shaping effect on the statistics of retinal speed while the gaze stabilization
reflex affects the statistics of retinal speed only in the center of the visual field.

3.3 Dependence of the local optic flow statistics on scene structure
and ego-motion

In this section we describe the statistical dependencies of the retinal flow on the depth
statistics of the scene (depth Z and fixation depth Zf ) and on the heading direction (Hφ, Hθ).
The dependence on scene statistics is interesting because the speed of an element of the optic
flow depends on the distance of the element from the observer. Moreover, in case of combined
observer translation and gaze stabilization the speed and the direction of the motion vector
of the optic flow element depends on the relationship between the distance of the element
from the observer and the depth of the gaze point. Without gaze stabilization, the statistics
of the retinal direction solely depend on the statistics of the heading direction and not on
the statistics of depth. Retinal speed is only influenced by depth and not by the depth of
the gaze point.

3.3.1 Dependence of the local optic flow statistics on the depth statistics of the
scene

To reveal to what extend the optic flow in the natural condition is statistically dependent on
the depth statistics of the natural environment, we estimated the normed mutual information
between the random variables retinal flow direction Φdir and speed V and the following
random variables of the scene structure: the two-dimensional vector (1/Z, 1/Zf ), the inverse
depth-values 1

Z
, and the quotient between the depth and the depth of the fixation point Z

Zf
.

We take Z/Zf rather than 1/Zf as a single random variable because the direction of retinal
motion depends on Z/Zf not on Zf alone. Figure 9 column A shows the distribution of the
normed mutual information over the visual field for the above parameter combinations.

The estimated values for mInormed(Φdir, (1/Z, 1/Zf )) (Figure 9 A1) range from 0.05 to 0.6.
Positions in the lower visual field show smaller values than positions in the upper visual
field. The highest values are observed along the horizontal meridian. The estimated val-
ues for mInormed(Φdir, 1/Z) (Figure 9 A2) are very small and nowhere exceed 0.16. The
estimated values for mInormed(Φdir, Z/Zf ) (Figure 9 A3) show a similar distribution as
mInormed(Φdir, (1/Z, 1/Zf )), but with a peak of higher dependence (0.8) in the center of
view. Taken together, these plots show that the dependence of the direction of the optic
flow on the depth statistics of the scene is particularly strong in the upper visual field and
that the combination of depth Z and fixation depth Zf considerably influences the flow di-
rections in this area. In contrast, the flow directions in the lower visual field do not carry
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much information about scene structure. Finally, the statistics of 1/Z by itself has hardly
any influence on the statistics of the retinal direction (Figure 9 A2).

In the mixed-depth condition (Figure 9 column B), the dependence of direction on depth
shows only minor variation over the visual field. The differences between upper and lower
visual field in the natural conditions disappear in the mixed-depth condition. The statistical
dependence of depth (1/Z) on the statistics of flow directions remains minor. The non-
stabilized condition is not shown, because in this condition retinal direction does not depend
on the depth structure of the scene, and all values would be zero.

Figure 10 shows the statistical dependence of retinal speed on the depth structure of the
scene. Compared to retinal direction (Figure 9 A), retinal speed shows an almost opposite
dependence on the statistics of depth in the scene in the natural condition (Figure 10 column
A). The estimated values for mInormed(V, (1/Z, 1/Zf )) vary between 0.6 and 0.97 (Figure 10
A1), with smaller values in the lower visual field and high values in the upper visual field.
The estimated values for mInormed(V, 1/Z) (Figure 10 A2), range from 0.58 to 0.97 and
show a visual field distribution similar to that of mInormed(V, (1/Z, 1/Zf )). The estimated
values for mInormed(V, Z/Zf ) (Figure 10 A3) range between 0.05 and 0.5. They show a
minor influence of Z/Zf on the statistics of retinal speed for the lower visual field and a
moderately increased statistical dependence for the upper visual field. The latter is caused
by an increased statistical dependence between 1/Z and Z/Zf for the upper visual field (data
not shown). We therefore conclude that the dependence of the distributions of retinal speed
on the depth statistics of the scene is mainly carried by 1/Z.

In the non-stabilized condition, retinal speed depends only on 1/Z. The estimated statistical
dependence of retinal speed on 1/Z resembles the estimated data in the natural condition
(see Figure 10 B2 ). In the mixed-depth condition, retinal speed is highly dependent on
depth at all positions of the visual field but the dependence on depth is symmetric between
upper and lower field.

We find that considering scenes with a non-natural depth statistics results in completely
modified statistical dependencies between depth and retinal optic flow. Thus, we conclude
that these dependencies are specific in the case of natural scenes.

3.3.2 Dependence of the local optic flow statistics on the statistics of heading

The dependence of the statistics of the retinal direction on the statistics of the observer’s
heading is shown in Figure 11. Column A depicts the natural condition. The estimated
values for mInormed(Φdir, (Hφ, Hθ)) (Figure 11 A1), range between 0.5 and 0.99 and thus
reveal a strong statistical influence of heading on the flow direction. This influence is much
more pronounced in the lower visual field than in the upper visual field. This observation
is in accordance with the observation in the previous section that the depth statistics have
a larger influence in the upper visual field than in the lower visual field. This increased
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dependence on depth in the upper visual field disturbs the linkage to the heading.

Panels A2 and A3 show how the retinal flow directions are influenced by the vertical and
horizontal heading components Hθ and Hφ separately. Hφ has a strong influence on the
statistics of retinal flow direction for eccentric positions on the vertical meridian. Hθ has the
highest influence at eccentric positions along the horizontal meridian.

In the non-stabilized condition, retinal direction is completely predicted by the heading
direction, as all retinal motion is radially away from the heading point (focus of expansion).
This means that the mutual information between the distribution of directions and heading
is infinite. However, as in the natural condition the different components of heading have
different statistical influence on retinal direction for different domains of the visual field,
but the generated bulges of high normed mutual information values are broader than in the
natural condition and do not show the abrupt decrease in the center of the visual field (see
Figure 11, Panels B2 and B3). According to the certainty that in the non-stabilized condition
the depth structure of the scene has no influence on the statistical behavior of flow directions,
there are no differences of the estimated mutual information values between the upper and
the lower visual field. In the mixed depth condition the statistical influence of heading on
the statistics of flow directions are decreased for the lower visual field and increased for the
upper visual field compared with the natural condition (see Figure 11 column C). This is a
result of the influence of the parameter Z/Zf on the statistics of retinal flow direction (see
Figure 10 B3). The distribution of normed mutual information for the components Hφ and
Hθ is similar to that of the natural condition, but rather than drop near the center of view
as in the natural condition, the distributions rise in the center of view (see Figure 11, Panels
C2 and C3).

Figure 12 shows the dependence of the statistics of the retinal speed on the statistics of
the observer’s heading. In the natural condition (Figure 12 A1), the estimated values for
mInormed(V, (Hφ, Hθ)) (Figure 12 A1), which vary between 0 and 0.77, indicate only a modest
statistical influence of heading on the statistics of retinal speed. Similar to retinal direction,
the influence is more pronounced in the lower visual field than in the upper visual field.

The restriction of the statistical influence to the lower visual field is also seen for the sepa-
rate vertical and horizontal heading components Hθ and Hφ (Figure 12 A2 and A3). This
correlates with the diminished effect of the statistics of depth on the retinal speed for the
lower visual field. However, the heading components Hφ and Hθ assert their influence in
different parts of the lower visual field. Hφ influences retinal speed along the diagonals in
the lower visual field whereas Hθ influences retinal speed near the vertical meridian in the
lower visual field.

In the non-stabilized condition (Figure 12, column B) there is more statistical dependence
in the upper visual field but the dependence in the lower visual field is very similar to that
in the natural condition. In the mixed depth condition, heading has hardly any statistical
influence on retinal speed (Figure 12 column C).
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Together, the different influences of Hφ and Hθ on retinal direction (Figure 11) and retinal
speed (Figure 12) can be explained by the following consideration: A horizontal deviation
of heading from straight ahead causes a deviation of the retinal flow direction from radial
for the flow elements close to the vertical meridian. Close to the horizontal meridian the
direction of flow vectors is less affected, because mainly the speeds are increased or reduced
there. Analogously, the statistical dependence of flow direction along the horizontal meridian
is higher for the vertical heading direction. However, the counter-rotation of the retina in
the case of gaze stabilization affect the statistical influence of the components of heading by
keeping the directions closer to radial.

These observations show that the statistical dependencies of retinal optic flow on heading
are shaped by both the geometry of natural scenes and the properties of natural ego-motion.
Altering either the ego-motion parameters, or the depth statistics, considerably changes the
dependence structure between retinal optic flow and heading.

3.4 Summary and Discussion

The results show how the structure of the retinal flow depends on the scene statistics and the
ego-motion statistics. The principle dependence of the retinal flow on these parameters is
clear from the geometrical properties of flow generation (Longuet-Higgins & Prazdny, 1980).
However, the particular relevance of individual parameters in natural situations depends on
the statistics of these parameters in the natural context. In the natural condition, the random
variables retinal speed and retinal direction show rather low statistical interdependencies at
almost all positions in the visual field. This statistical independence between retinal speed
and retinal direction in the natural condition allows to efficiently encode both parameters
independently, as is the case in motion sensitive neurons in visual cortical area MT. These
neurons have largely independent tuning curves for direction and speed (Rodman & Albright,
1987). Gaze stabilization plays an important role for the independence between retinal speed
and direction. Without gaze stabilization there is a much higher statistical interdependence
between retinal speed and retinal direction for large domains of the lower visual field. Since,
this increase occurs only in the lower visual field the depth structure appears to have also a
strong influence on these interdependencies.

The distributions of retinal speed and retinal direction are strongly influenced by the un-
derlying statistics of depth and ego-motion parameters. The statistical properties of the
distributions measured for the different conditions differ strongly in their behavior over the
field of view. In the natural condition, differences between the upper and the lower visual
field are clearly visible for both retinal flow direction and retinal speed. In the non-stabilized
condition, in contrast, differences between upper and lower visual field only occur in the
distributions of retinal speed. This is because depth has no influence on flow direction in the
non-stabilized condition. The statistical differences for the upper and the lower visual field
are caused by different depth statistics for the upper and the lower visual field. Most natural
scenes consist of objects on a ground surface. The ground surface may be flat, or form dips
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and humps, or it can decline or rise. But in each scene, the ground confines the maximal
depth at each positions of the visual field. Therefore, the existence of a ground in natural
scenes generates an asymmetry in the depth statistics between positions in the upper and
the lower visual field and restricts the variability of depth in the lower visual field. This
asymmetry underlies all observed asymmetries between upper and lower visual field in the
flow statistics. When the asmmetry in the depths statistics are destroyed in the mixed-depth
condition, the differences in optic flow statistics between the upper and the lower visual field
vanish. All statistical variations between different positions in the field of view in that con-
dition are caused by the mathematical rules behind optic flow generation and the statistics
of heading. However, the asymmetries between upper and lower visual field in the natural
condition arise not just from the depth distribution alone, but rather from a combination of
the depth distribution and the natural ego-motion parameters.For instance, many properties
of the flow distributions in Figure 11 are symmetric between upper and lower field also in
the non-stabilized gaze condition. Regarding the properties of early motion detectors our
results coincides with the findings in Zanker & Zeil (2005), who also state differences in the
distributions of the responses of early motion detectors between the upper and lower visual
field for straight motion through natural scenes.

One may predict properties of motion sensitive neurons from the statistics of retinal optic
flow according to the principle of efficient encoding, particular with respect to the dependence
of tuning properties on the positions of the receptive field. The variation of the distributions
of retinal speed and directions over the visual field may explain the variation of properties
of neurons encoding different positions in the visual field. Thus, populations of neurons
encoding for optic flow near the center of the visual field should be more sensitive for low
speed but for a large range of retinal directions, whereas populations of neurons encoding
for optic flow more peripherally should be more sensitive for large retinal speed but for more
radial retinal directions (cf for instance (Albright, 1989) for such distributions in the primate
cortical area MT). The tuning curves of such neurons should account for quantities such as
skew and kurtosis, which might effect the proportion of sharply and broadly tuned neurons
as well as the tuning in individual cells. Furthermore, the peripheral increase of the size
of the receptive field of motion processing neurons in area MT seems to be well adapted
to the structure of natural flow fields (Calow et al., 2005). More quantitative predictions
may be derived from an analysis of efficient encoding of optic flow based on the measured
distributions.

Our analysis reveals that the dependence of retinal speed and direction on the set of ego-
motion and scene parameters varies considerably across the visual field. In the natural
condition, the influence of the depth statistics on the retinal speed is strongest in the upper
visual field and much weaker in the lower visual field. Since optic flow depends on depth and
heading, an increase in the statistical influence of one parameter must be accompanied by
a decrease of the statistical influence of another parameter. Therefore, the reduction of the
influence of the depth statistics on the retinal speed coincides with an increased influence of
the statistics of heading on the statistics of retinal speed at the lower visual field. This is
true also in the non-stabilized condition. The finding that the dependence of retinal speed
on depth is highest in the mixed depth condition shows that retinal speed can be regarded as
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directly linked to the depth map of the scene, at least for the upper visual field. For the lower
visual field, the dominance of the ground and the associated decrease in the variation of the
depth over different scenes increases the statistical influence of the remaining parameters.

The statistics of retinal direction in the natural condition, on the other hand, are independent
of the statistics of depth throughout most of the visual field. The same is true in the mixed
depth condition. However, retinal direction is linked to the statistics of the combination of
depth and depth of fixation in terms of the quotient Z/Zf . This quotient separates the scene
in foreground (entities closer than the fixation point, Z/Zf < 1) and background (entities
more distanced than the fixation point, Z/Zf > 1). The dependence of direction on Z/Zf

is most pronounced near the horizontal meridian, presumably because variation in depth
relative to the depth of fixation occurs most frequently in that area of the scene image.

It is conceivable that the tight statistical linking of optic flow to the depth structure of the
scene enables the brain to reconstruct a good relative depth map of the scene from the motion
signals. In the natural condition, heading influences the statistics of direction and speed of
the retinal motion to different degrees. This is especially pronounced in the lower visual field.
Heading has the largest influence on the statistics of direction. The influence of heading
on retinal speed remains minor. The azimuth and the elevation component of heading have
mutually exclusive statistical influence on the retinal flow direction. The azimuth component
and the elevation component of heading are statistically independent (mInormed(Hφ, Hθ) =
0.0032) in the distribution we used. The strong statistical influence of one heading component
in a certain domain of the visual field leads to a high correlation between the directions
of flow vectors within that domain and to a lower correlation between the directions of
flow vectors lying in domains which are influenced by the other heading component. We
leave the quantitative investigation of the statistical correlation between flow vectors at
different position of the field of view and the extraction of possible independent components
or patterns for future work. But detection of such flow patterns requires receptive fields,
which fully contain the extend of the pattern. Therefore, the sizes of the domains of a
high statistical influence of a certain heading component on retinal flow might also predict
the sizes of the receptive fields of heading sensitive neuron. Heading estimation from optic
flow is processed in the medial superior temporal (MST) brain area, which receives most
of the incoming information from motion sensitive neurons in area MT and which is widely
accepted to process patterns of optic flow (Duffy & Wurtz, 1991; Tanaka & Saito, 1989;
Lappe, 1996). The large receptive field of neurons in area MST are therefore consistent
with the large extend of the domains of a high statistical influence of the azimuth and the
elevation component of heading on retinal optic flow, particularly in the periphery.

Our study was performed with human-like ego-motion. It is difficult to speculate how the
local statistics of retinal velocity will differ for other animals. The height of the eyes above
ground may quantitatively alter the statistics, particularly in the lower visual field. However,
Zanker & Zeil (2005) reported that the properties of motion signal distributions in the
upper visual do not change much with variation of the height of the camera field. Many
higher animals that live mostly on the ground, in similar environments, and perform gaze-
stabilization reflexes will qualitatively encounter similar local statistics of optical flow. To
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what extend the statistics will change quantitatively for different species is an interesting
question for future work.
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Figure 1: A: Panoramic projection of 3D data of a range-image, The grey values encode the intensity of
the reflected laser beam. B: measured gaze directions projected onto the azimuth-elevation plane, C: Retinal
flow field generated by a leftward motion and a gaze stabilizing eye movement through the scene depicted
with the white frame in A. The motion direction is depicted by a cross. The direction of gaze is depicted by
a disc.
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Figure 2: Measured distributions of retinal velocity for 9 different positions in the left visual field. The
numbers in each panel give the visual field position in spherical coordinates (φ̃, θ̃) in degrees. First row:
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Figure 3: Examples of scatter plots of the dependence of retinal speed on inverse depth (A), elevation of
heading (B), azimuth of heading (C), The data are from the visual field position (−5◦,−18◦).
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the different conditions plotted over the visual field. 1: mInormed (V, (1/Z, 1/Zf )) between retinal speed
V and depth structure (1/Z, 1/Zf ), 2: mInormed (V, 1/Z) between V and the inverse of depth 1/Z, 3:
mInormed (V,Z/Zf ) between V and the quotient of depth and fixation depth Z/Zf
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Figure 11: Statistical dependence between direction and heading. Estimated normed mutual information in
the different conditions plotted over the visual field. 1: mInormed (Φdir, (Hφ,Hθ)) between retinal direction
Φdir and heading (Hφ,Hθ), 2: mInormed (Φdir,Hφ) between Φdir and the horizontal heading component Hφ,
3: mInormed (Φdir,Hθ) between Φdir and the vertical heading component Hθ.
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Figure 12: Statistical dependence between speed and heading. Estimated normed mutual information
in the different conditions plotted over the visual field. 1: mInormed (V, (Hφ,Hθ)) between retinal speed
V and heading (Hφ,Hθ), 2: mInormed (V,Hφ) between V and the horizontal heading component Hφ, 3:
mInormed (V,Hθ) between V and the vertical heading component Hθ.
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1 Introduction

The detection of the independently moving objects (IMOs) can be considered
as an exponent of the obstacle detection problem, which plays a crucial role in
traffic-related computer vision. Vision alone is able to provide robust and reli-
able information for autonomous driving or guidance systems in real time but
not for the full spectrum of real world scenarios. The problem is complicated
by ego-motion, camera vibrations, imperfect calibrations, complex outdoor en-
vironments, insufficient camera resolutions and other limitations. The fusion
of information obtained from multiply sensors can dramatically improve the
detection performance [12, 31, 2, 3, 4, 9, 17, 30, 19, 13, 16, 5, 29, 18, 10, 32].

In Table 1 we present a chronological list of studies which are related to
sensor fusion in traffic applications and which are relevant to the considered
topic. Various sensors can be used for traffic applications: video (color or
gray scale) cameras in different setups (monocular, binocular or trinocular),
IR (infra red) cameras, LIDAR (Light Detection and Ranging), radar (Radio
Detection and Ranging), GPS/DGP (Global Positioning System/Differential
GPS) as well as data from vehicle IMU (Inertial Measurement Unit) sensors:
accelerometer, speedometer, odometer and angular rate sensors (gyroscopes).
There are a number of approaches to fusion characterization [11, 8, 26, 37]
but, most frequently, fusion is chartacterized by the abstraction level:

1. Low (signal) level fusion combines raw data provided directly from sensors,
without any preprocessing or transformation.

2. Intermediate (feature) level fusion aggregates features (e.g. edges, corners,
texture) extracted from raw data before aggregation.

3. High (decision) level fusion aligns decisions proposed by different sources.

Depending on the application, several different techniques are used for fu-
sion. Matching of the targets detected by different sensors is often used for
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2 Nikolay Chumerin and Marc M. Van Hulle

obstacle detection. Extensions of the Kalman filter (KF) [15](e.g. extended
Kalman filter (EKF) and unscented Kalman filter (UKF) [14]) are mostly in-
volved in estimation and tracking of obstacle parameters, as well as in egopo-
sition and egomotion estimation.

In this study, we propose a novel approach based on data fusion on different
levels for IMO detection and -description. In the proposed model only three
sensors are used: stereovision, speedometer and LIDAR. The flow diagram of
the model is shown on Fig. 1. The IMOs detected by vision are matched with
obstacles provided by LIDAR. In the case of a successful matching, the de-
scriptions of the IMOs (distance, relative speed and acceleration) are retrieved
using ACC (Adaptive Cruise Control) LIDAR data, or otherwise these descrip-
tions are estimated based on vision. Absolute speed of the IMO is evaluated
using its relative velocity and egospeed provided by the speedometer.
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Fig. 1. Flow-diagram of the proposed model.

In order to validate the model we have used the data obtained in the
frameworks of the DRIVSCO and ECOVISION European Projects. In record-
ing sessions a modified Volkswagen Passat B5 was used as a test car. It was
equipped by Hella KGaA Hueck & Co.

2 Vision sensor data processing

For vision-based IMO detection, we used an approach proposed by Chumerin
and Van Hulle [7]. This method is based on the processing and subsequent
fusing of two cooperative streams: the independent motion detection stream
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Table 1. Sensor fusion for traffic applications papers short overview

Study Sensors Cues/Features Fusion method

Handmann et al.
[12]

monocular vision,
radar

color, edges, texture (local
image entropy), (up to 3)
obstacle positons

MLP

Stiller et al. [31] stereo vision, radar,
LIDARs,
DGPS/INS

horizontal edges, stereo
disparity, optical flow, 2D range
profile, global egoposition and
egoorienation

Kalman filter

Becker and Simon
[2]

stereo vision,
DGPS, vehicle
sensors, LIDARs,
radar

local egoposition and
ego-orientation (w.r.t. lane),
global egoposition and
ego-orientation, egospeed,
egoacceleration, steering angle,
2D range profile

Kalman filter

Kato et al. [17] video camera
(monocular), radar

Kanade-Lucas-Tomasi feature
points, range data

frame-to-frame feature
points coupling based on
range data

Fang et al. [9] video cameras
(stereo), radar

edges, stereo disparity, depth
ranges

depth-based target edges
selection and contour
discrimination

Steux et al. [30] color video camera
(monocular), radar

shadow position, rear lights
position, symmetry, color, 2D
range profile

belief network

Hofmann et al. [13] color video camera
(monocular), BW
video camera
(monocular), radar,
ACC-radarsensors

lane position and width, relative
egoposition and ego-orientation
(w.r.t. road), radar-based
obstacles

extended Kalman filter

Laneurit et al. [19] vision, GPS,
odometer, wheel
angle sensor,
LIDAR

relative egoposition and
ego-orientation (w.r.t. road),
global egoposition and
ego-orientation, steering angle,
pathlength, LIDAR-based
obstacle profile

Kalman filter

Sergi [28] vision, LIDAR,
DGPS

video stream, global egoposition
and ego-orientation,
LIDAR-based obstacle profile

Kalman filter

Sole et al. [29] monocular camera,
radar

horizontal and vertical edges,
’pole like’ structures, radar
target,

matchingpurpose

Blanc et al. [5] IR camera, radar,
LIDAR

IR images, range profile Kalman filter, matching

Labayrade et al.
[18]

stereo vision,
LIDAR

stereo disparity, “v-disparity”,
lighting conditions, road
geometry, obstacle positions

matching, Kalman filter,
belief theory based
association

Thrun et al. [33] color video camera
(monocular), GPS,
LIDARs, radars,
accelerometers,
gyroscopes

color images, global egoposition
and ego-orientation, egospeed,
short-range profile (LIDARs),
long-range obstacles (radars)

Unscedted Kalman Filter

Bombini et al. [6] gray-scale video
camera
(monocular), radar

vertical edges symmetry,
horizontal edges, radar-based
obstacles

search and matching
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and the object recognition stream. The recognition stream deals with static
images (i.e., does not use temporal information) and therefore can not dis-
tinguish between independently moving and static (i.e., with respect to the
environment) objects, but which can be detected by the independent motion
stream. One should note that the idea of the two processing streams is widely
accepted in the visual neurosciences [34].

2.1 Vision sensor setup

In the recording sessions, we used a setup with two high resolution progressive
scan color CCD cameras (see Table 2). The camera rig was mounted inside
the cabin of the test car (see Fig. 2) at 1.240 m height above the ground,
with 1.83 m from the frontend and 17 cm displacement from the middle of
the test car towards the driver’s side. Both cameras were oriented parallel to
each other and to the longitudinal axis of the car and look straight ahead into
the street. Before each recording session, the cameras were calibrated. Raw
color (Bayer pattern) images and CAN-bus data were stored for further off-
line processing. In the model, we used rectified gray-scale images downscaled
to a 320 × 256 pixels resolution.

Table 2. Video sensor specifications

Sensor parameter Value

Manufacturer JAI PULNiX Inc.
Model TMC-1402Cl
Field of View 53◦ × 42.4◦ (horizontal×vertical)
Used resolution 1280 × 1024
Used frequency 25 fps
Color RGB Bayer pattern
Interocular distance 330 mm
Focal length 12.5 mm
Optics Pentax TV lenses

2.2 Independent motion stream

The problem of independent motion detection can be defined as the problem
of locating objects that move independently from the observer in his field of
view. In our case, we build so-called independent motion maps where each
pixel encodes the likelihood of belonging to an IMO. For each frame we build
an independent motion map in two steps: early vision cues extraction and
classification.
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AA BB

Fig. 2. Setup of the cameras in the car.

As vision cues we consider: stereo disparity (three components – for cur-
rent, previous and next frame), optical flow (two components) and normal-
ized coordinates1 (two components). The optic flow and stereo disparity are
computed using multiscale phase-based optic flow and stereo disparity algo-
rithms [25, 27]. Unfortunately, there are no possibilities to estimate reliably
all these cues for every pixel in the entire frame. This means that the motion
stream contains incomplete information, but this gap will be bridged after
fusion with the recognition stream.

Classif ication partFusion part
Cue 1Cue 1

Cue 2Cue 2

Cue 3Cue 3

Cue 4Cue 4

Cue 5Cue 5

Cue 6Cue 6

Cue 7Cue 7

Cue 8Cue 8

Cue Cue DD

ClassClass
predictionprediction

Fused cue 1Fused cue 1

Fused cue Fused cue dd

Fused cue 2Fused cue 2

Fig. 3. MLP used as classifier in independent motion stream.

We consider each pixel as a multidimensional vector with visual cues as
components. We classify all the pixels (which have every component prop-
erly defined) in two classes: IMO or background. We have tried a number of
setups for classification, but the optimal performance was obtained with a

1 By a normalized coordinate system on a frame we mean the rectangular coordi-
nate system with origin in the center of the frame, where the upper-left corner is
(−1,−1) and the lower-right corner is (1, 1).
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6 Nikolay Chumerin and Marc M. Van Hulle

multilayered perceptron (MLP) with three layers: a linear (4–8 neurons), a
nonlinear layer (8–16 neurons), and one linear neuron as output. For training
purposes, we labeled the pixels in every frame of a number of movies into
background and different IMOs, using a propriety computer-assisted labeling
tool (see Fig. 4).

Fig. 4. myLabel – a tool for manual labelling video sequences.

After training, the MLP can be used for building an IMO likelihood map
I for the entire frame:

I(x, y) = p (IMO|(x, y)) , (1)

where x, y are pixel coordinates. Fig. 5 shows an example of a IMO likelihood
map obtained using the proposed approach.

2.3 Recognition stream

For the recognition of vehicles and other potentially dangerous objects (such
as bicycles and motorcycles, but also pedestrians), we have used a state of
the art recognition paradigm – the convolutional network LeNet, proposed by
LeCun and colleagues [20]. Modifications of LeNet were successfully apllied
to generic object recognition [21] and even to obstacle avoidance in an au-
tonomous robot [22]. We have used the CSCSCF configuration of LeNet (see
Fig. 6) comprising six layers: three convolutional layers (C0, C1, C2), two
subsampling layers (S0, S1) and one fully connected layer (F). As an input,
LeNet receives a 64× 64 gray-scale image. Layer C0 convolves the input with
ten 5 × 5 kernels, adds (ten) corresponding biases, and passes the result to a
squashing function2 to obtain ten 60 × 60 feature maps.

2 f(x) = A tanh(Sx), A = 1.7159 and S = 2/3 according to [20].

67



Cue and Sensor Fusion for IMOs Detect. and Descr. in Driving Scenes 7

Fig. 5. (Left) Frame number 342 of motorway3 sequence. (Right) Matrix I , output
of the motion stream for the same frame. Value I(x, y) is defined as probability of
pixel (x, y) being part of an IMO.
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Fig. 6. LeNet – a feed-forward convolutional neural network, used in the recognition
stream.

In layer S0, each 60 × 60 map is subsampled to a 30 × 30 map, in such a
way that each element of S0 is obtained from a 2×2 region of C1 by summing
these four elements, by multiplying with a coefficient, adding a bias, and by
squashing the end-result. For different S0 elements, the corresponding C1’s
2 × 2 regions do not overlap. The S0 layer has ten coefficient-bias couples
(one couple for each feature map). Computations in C1 are the same as in
C0 with the only difference in the connectivity: each C1 feature map is not
obtained by a single convolution, but as a sum of convolutions with a set of
previous (S0) maps (see Table 3). Layer S1 subsamples the feature maps of
C1 in the same manner as S0 subsamples the feature maps of C0. The final
convolutional layer C2 has kernels sized 13 × 13 and 180 feature maps which
are fully connected to all 16 S1 feature maps. It means that the number of C2
kernels is 16× 180 = 2880, and the corresponding connectivity matrix should
have all cells shaded. The output layer consists of seven neurons, which are
fully connected to C2’s outputs. It means that each neuron in F (corresponding
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to a particular class background, cars, motorbikes, trucks, buses, bicycles and
pedestrians) just squashes the biased weighted sum of all C2’s outputs.

C1 feature maps 
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Table 3. S0-C1 connectivity matrix. A shaded cell which belongs to the i-th column
and j-th row indicates that the j-th feature map of S0 participates in the compu-
tation of the i-th feature map of C1. For example, to compute the fourth feature
map of C1, one has to find a sum of convolutions of S0 feature maps 0, 8 and 9 with
corresponding kernels. The number of kernels in C1 (the number of shaded cells in
the table) is 64.

LeNet scans the input image (left frame) in two scales, 320 × 256 and
640 × 512, with a 64 × 64 sliding window and in 8 and 16 steps, respectively.
For each position of the sliding window, we add the output of the class to
the corresponding (window) range in a 320 × 256 matrix. In such a way, we
obtain seven matrices R0, . . . , R6 which, after normalization, are regarded as
likelihood maps for the considered classes (see Fig. 7).

Note that, for further processing, the most important map is R0, which
corresponds to the background class and the so-called non-background map
is obtained as (1−R0). The rest of the maps R1, . . . , R6 are responsible only
for IMO classification.

2.4 Training

For training both streams, we used two rectified stereo video sequences, each
consisting of 450 frames. We have labeled IMOs in all left frames of the se-
quences. These labels were used for training the motion stream classifier.

We have used small batches with the increasing size version of the BFGS
Quasi-Newton algorithm for the independent motion classifier training. Sam-
ples for each batch were randomly taken from all the frames of all the scenes.
Training was stopped after reaching 0.04 (MSE) performance.

To train LeNet, we have prepared a dataset of 64 × 64 grayscale images
(approximately 67500 backgrounds, 24500 cars, 2500 motorbikes, 6200 trucks,
1900 bicycles, 78 buses, and 3500 pedestrians). We have doubled the dataset
by including horizontally flipped versions of all the samples. Images were
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Fig. 7. (Left) Frame number 342 of motorway3 sequence. (Right) Output of the
recognition stream for the same frame. Here, we used different colors to present
different classes: black for background, red for cars, blue for motorcycles and green
for trucks.

taken mainly from publicly available object recognition databases (LabelMe3,
VOC4). A stochastic version of the Levenberg-Marquardt algorithm with diag-
onal approximation of the Hessian [20] was used for LeNet training. Training
was stopped after reaching a misclassification rate less than 1.5%. To increase
the robustness of the classification, we have run the training procedure sev-
eral times, every time by adding a small (2%) amount of uniform noise and
by randomly changing the intensity (97–103%) of each training sample.

2.5 Visual streams fusion

Fusion of the visual streams for a particular frame is achieved in three steps.

1. Intersection of the independent motion map I with the mask M of the
most probable locations of the IMOs in the frame (see Fig. 8):

F1(x, y) = I(x, y)M(x, y). (2)

2. Intersection of the previous result F1 with the non-background map (1 −
R0):

F2(x, y) = F1(x, y)(1 − R0(x, y)). (3)

3. Intersection of the previous result F2 with the likelihood maps R1, . . . , R6

of each class, which results in six maps L1, . . . , L6 (one for each class,
except the background):

Lk(x, y) = F2(x, y)Rk(x, y), k = 1, . . . , 6. (4)

3 http://labelme.csail.mit.edu/
4 http://www.pascal-network.org/challenges/VOC/
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The first step is necessary for rejecting regions of the frame where the appear-
ance of the IMOs is implausible. After the second step we obtain crucial infor-
mation about regions which have been labeled as non-backgrounds (vehicles
or pedestrians) and which, at the same time, contain independently moving
objects. This information is represented as the saliency map F2, which we will
further use for IMO detection/description and in the tracking procedure. The
third step provides us the information needed in the classification stage.
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Fig. 8. Matrix M , masking regions of possible IMO appearance in a frame.

3 IMO Detection and Tracking

For detecting an IMO, we have used a simple technique based on the detec-
tion of the local maximas in the maps defined in (3). We have performed a
spatio-temporal filtering (i.e. for i-th frame we apply smoothing of a three-
dimensional array – a concatenation of the (i−2)-th, (i−1)-th, i-th, (i+1)-th
and (i + 2)-th two-dimensional maps along the third time-dimension). Then
we search for local maximas in the entire (i-th) filtered frame and consider
them as the IMO centers xk for this frame.

For tracking IMOs, we have introduced a parameter called tracking score.
For a particular IMO, we increase this parameter when, in the next frame,
only in a small neighborhood of the IMO center there is a good candidate for
the considered IMO in the next frame, namely the IMO with the same class
label, and approximately with the same properties (size, distance and relative
speed in depth). Otherwise, the tracking score is decreased. An IMO survives
while the tracking score is above a fixed threshold. The tracking score works
as a momentum and allows the system to keep tracking an IMO even when
there are no sufficient data in the next few frames.
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4 Classification and description of the IMOs

As soon as we are able to detect IMOs, it becomes possible to classify them
and to retrieve their properties (size, absolute speed in depth, relative speed
in depth, time to contact, absolute acceleration, etc).

We define the class ck of the k-th IMO as:

ck = arg max
1≤c≤6

{Lc(xc)} , (5)

where xk = (ik, jk) is the center of the k-th IMO (in image domain D) and
Lc are the maps, defined in (4).

For the k-th IMO’s size, σk, estimation, we search for a σ > 0, where the
first minimum of the function (6) takes place.

∆k(σ) =

∫

D

∣

∣

∣
Lck

(xk)e−||xk−x||2/σ2 − Lck
(x)

∣

∣

∣
dx. (6)

The IMO’s distance estimation is a crucial point in the retrieval process.
Using an averaged (in a small neighborhood of the IMO’s center) disparity and
known calibration parameters of the two cameras, we have computed the dis-
tance to the IMO. To compensate for instabilities in the distance estimations,
we have used a robust linear regression based on the previous five estimates.

Most of the present-day motor vehicles are being equipped with an increas-
ing number of electronic devices, including control units, sensors, actuators,
etc. All these devices communicate with each other over a data bus. Dur-
ing recording sessions, we have stored the egospeed provided by test car’s
speedometer.

The relative speed in depth, we estimated as the derivative (with respect
to time) of the distance using robust linear regression based on the last five
estimations of the distance. To estimate the time to contact, we have divided
the averaged distance by the averaged relative speed in depth. Using the
precise value of the ego-motion speed from the CAN-bus data, and simply by
adding it to the relative speed in depth we have also obtained the absolute
speed in depth of the considered IMO.

The derivative of the absolute speed in depth can be considered as an
estimation of the acceleration (it is true only in the case when the ego-heading
is collinear to the heading of the IMO). An example of IMO tracking and the
retrieved properties is shown in Fig. 9.

5 LIDAR sensor data processing

The ACC system of the used test car was able to detect and track up to ten
obstacles, when in the range of the LIDAR sensor. In addition to position, the
ACC can also provide information about relative lateral extent and speed of
the tracked obstacle.
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12 Nikolay Chumerin and Marc M. Van Hulle

Fig. 9. Vision-based IMOs detection, classification, description and tracking result.

5.1 LIDAR sensor setup

We used data recorded by the test car equipped with the LIDAR sensor man-
ufactured by Hella KGaA Hueck & Co (see Table 4 for specifications). The
sensor was mounted in the test car at 30 cm height above ground, with 18 cm
from the frontend and 50 cm from the middle of the car to the driver’s side
(see Fig. 10). The ACC system analyzes raw LIDAR data and tracks up to
10 targets within a distance of up to 150 m. The tracking data are updated
and available for recording via the CAN-bus (Flex-ray) every 60 ms. Each
tracked target is described by its distance, lateral position (left and right
edges), relative velocity and acceleration.

Table 4. LIDAR sensor specifications

Sensor parameter Value

Manufacturer Hella KGaA Hueck & Co
Model IDIS 1.0
Field of view 12◦ × 4◦ (horizontal×vertical)
Range up to 200 m
Description 12 fixed horizontally distributed beams, each beam ob-

serves a 1◦ × 4◦ angular cell

5.2 Ground plane estimation

The LIDAR provides the depth and lateral position of the detected obstacles.
This information is not sufficient for the correct projection of the obstacles
onto the video frame. In order to estimate the missing vertical components (in
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Fig. 10. ACC LIDAR configuration.

the frame domain) of the IMOs we assume that all IMOs are located near the
dominant ground plane. Here we use a strong assumption of road planarity,
which is not met in all driving scenarios and could introduce bias. However, in
our model, the positions of the LIDAR-based obstacles are used only to verify
(confirm) vision-based obstacles, so that the bias caused by the non-planarity
of the road is to a large extend unimportant.

In order to estimate the ground plane, we estimate the disparity plane, then
map the set of points from the disparity domain into a 3D world domain, and
finally fit a plane through the projected set.

Before the disparity plane estimation, we intersect the disparity map with
the predefined road mask (see Fig. 11, left panel). By this step, we filter out
the majority of pixels which do not belong to the ground plane and are outliers
in the disparity plane linear model:

∆ : D = αx + βy + γ, (7)

where (x, y) are pixel coordinates and D is disparity.
The disparity plane parameters α, β and γ are estimated using IRLS (Iter-

atively Reweighted Least-Squares) with weight function proposed by Beaton
and Tukey [1] and tuning parameter c = 4.6851.

For the ground plane parameters estimation, we choose a set of nine points
(3× 3 lattice) in the lower half of the frame (see Fig. 11, right panel). Dispar-
ities for these points are determined using the estimated disparity plane (7).
Given the disparities and camera calibration data, we project the selected
points into a 3D world coordinate system. In addition, we add two so-called
stabilization points which correspond to the points where the front wheels of
the test car are supposed to touch the road surface. For the inverse projection
of the stabilization points, we use parameters of the canonic disparity plane: it
is a disparity plane which corresponds to the horizontal ground plane observed
by cameras in a quiescent state. The parameters of the canonic disparity plane
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Fig. 11. (Left) Predefined road mask. (Right) Example of the ground plane esti-
mation. Red points represent points used for ground plane estimation (see text).

and positions of the stabilization points were obtained based on the test car
geometry and camera setup position and orientation in the test car. The full
set of 11 points is then used for IRLS fitting of the ground plane in a world
coordinate system:

π : aX + bY + cZ + d = 0, (8)

where (X, Y, Z) are pixel coordinates in the 3D world coordinate system con-
nected to the left camera. Here were assume that a2 + b2 + c2 = 1 (otherwise
one can divide all coefficients by

√
a2 + b2 + c2) and b > 0. In this case vector

n = (a, b, c)T represents the normal unity vector of the ground plane and coef-
ficient d represents the distance from the camera to the ground plane. During
the disparity plane estimation, we use the estimation from the previous frame
for weight initialization in IRLS; for the first frame, for the same purpose, we
use the parameters of the canonic disparity plane. We assume that the ground
plane is estimated correctly if the following conditions are met:

‖nt − n0‖ < θ0 and ‖nt − nt−1‖ < θ1, (9)

where nk is normal vector for k− th frame, and n0 is canonical normal vector.
Thresholds θ0 = 0.075 and θ1 = 0.015 were chosen empirically. If the estimated
ground plane does not satisfy (9), the previous estimation is used.

5.3 LIDAR obstacles projection

Projection of the LIDAR-based obstacles into the (left) frame is based on the
ground plane position, the obstacle positions, the camera projective matrix
(from calibration data) and the position and orientation of the LIDAR sensor
with respect to the camera. Only the height of the obstacles is not available.
We have set the height of all the obstacles to a fixed value of 1.5 m. The result
of the LIDAR obstacles projection is shown in Fig. 12.
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Fig. 12. ACC obstacles projection. Left part contains the gray-scale version of
current frame, overlayed by the horizon line, the ground plane segment and projected
ACC (LIDAR) obstacles. Right part represents obstacles 2D range profile, provided
by ACC system.

6 Vision and LIDAR fusion

The fusion of the vision-based IMOs with LIDAR-based obstacles is based on
a simple matching process.

1. For the current IMO Ik, we look for candidates from the LIDAR obstacles
Ol by means of the high intersection ratio:

rkl = #(Ik ∩ Ol)/#(Ik), (10)

where #(·) is number of pixels of the set in the brackets. If ratio rkl >
0.5, then obstacle Ol is an IMO Ik candidate and considered for further
verification. If all obstacles were rejected, IMO Ik remains unupdated and
process continues from step 4.

2. All the obstacles Okm
with distances dkm

satisfying the following condi-
tion:

|dkm
− d∗k|

d∗k
> 0.15, (11)

where d∗k denotes the distance of the IMO Ik, are rejected. Like in the
previous step, if all obstacles were rejected, IMO Ik remains unupdated
and the process continues from step 4.

3. Among the remaining obstacles, we choose the best matching candidate
Oki

for the IMO Ik with minimal depth deviation |dki
−d∗k|. Distance, rel-

ative velocity and acceleration of IMO Ik are updated using corresponding
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values of the obstacle Oki
. The absolute velocity of the IMO Ik is reesti-

mated in accordance with the new value of the relative speed. The obstacle
Oki

is eliminated from the search process. If all the obstacles were rejected,
IMO Ik remains unupdated.

4. The process finishes if all IMOs are checked, otherwise the next IMO is
selected for matching and the process continues from step 1.

Some results of the presented fusion are shown on Fig. 13.

Fig. 13. Fusion results. Red bars represent detected IMOs, whereas LIDAR obsta-
cles rejected by fusion procedure are shown as yellow bars.

7 Conclusions and future steps

A high level sensor fusion model for IMO detection, classification and track-
ing has been proposed. The model incorporates three independent sensors:
vision, LIDAR and speedometer. Vision plays the most important role in the
model, whereas LIDAR data are used for confirming the IMO detection and
for updating the IMO properties. The speedometer is used only for the IMOs
absolute speed in depth estimation.
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The existing model is still not a real-time system, but we see a number
of ways to increase its speed. Both visual streams of the model have feed-
forward architectures, which can be easily implemented in hardware such as
Field-Programmable Gate Arrays (FPGAs). Moreover, as far as the streams
are independent, they can be implemented as separate FPGAs, working in
parallel. In order to speed up the entire model, we propose to switch from
LeNet-based object recognition to faster and more task-specific recognition
paradigm (e.g. [36] or [23]). Another way to increase the speed of the model
could be the transition from an MLP-based fusion of the visual cues to a hard-
coded fusion of the visual cues with egomotion (e.g. [24]). As another future
step of the model development, we envisage the incorporation of KF-based
approaches [14, 35] for IMO tracking.
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Abstract. In the first part of this paper, we analyze the relation between local image
structures (i.e., homogeneous, edge-like, corner-like or texture-like structures) and the
underlying local 3D structure (represented in terms of continuous surfaces and different
kinds of 3D discontinuities) using range data with real-world color images. We find that
homogeneous image structures correspond to continuous surfaces, and discontinuities are
mainly formed by edge-like or corner-like structures, which we discuss regarding potential
computer vision applications and existing assumptions about the 3D world.

In the second part, we utilize the measurements developed in the first part to investigate
how the depth at homogeneous image structures is related to the depth of neighbor edges. For
this, we first extract the local 3D structure of regularly sampled points, and then, analyze the
coplanarity relation between these local 3D structures. We show that the likelihood to find a
certain depth at a homogeneous image patch depends on the distance between the image patch
and a neighbor edge. We find that this dependence is higher when there is a second neighbor
edge which is coplanar with the first neighbor edge. These results allow deriving statistically
based prediction models for depth interpolation on homogeneous image structures.

Submitted to:Network: Comput. Neural Syst.
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1. Introduction

Depth estimation relies on the extraction of 3D structure from 2D images which is realized by
a set of inverse problems including structure from motion, stereo vision, shape from shading,
linear perspective, texture gradients and occlusion [Bruce et al., 2003]. In methods which
make use of multiple views (i.e., stereo and structure from motion), correspondences between
different 2D views of the scene are required. In contrast, monocular or pictorial cues such
as shape from shading, texture gradients or linear perspective use statistical and geometrical
relations within one image to make statements about the underlying 3D structure.

Many surfaces have only weak texture or no texture at all, and as a consequence, the
correspondence problem is very hard or not at all resolvable for these surfaces. Nevertheless,
humans are able to reconstruct the 3D information for these surfaces, too. This gives rise
to the assumption that in the human visual system, an interpolation process is realised that,
starting with the local analysis of edges, corners and textures, computes depth also in areas
where correspondences cannot easily be found.

Processing of depth in the human visual system starts with the processing of local
image structures (such as edge-like structures, corner-like structures and textures) in V1
[Hubel and Wiesel, 1969, Gallant et al., 1994, Lee et al., 1998]. These structures (called 2D
structures in the rest of the paper) are utilized in stereo vision, depth from motion, depth from
texture gradients and other depth cues, which are localized in different parts of the brain,
starting from V1 and involving V2, V3, V4 and MT (see,e.g., [Sereno et al., 2002]).

There exists good evidence that depth cues which are not directly based on
correspondences evolve rather late in the development of the human visual system.
For example, pictorial depth cues are made use of only after approximately 6 months
[Kellman and Arterberry, 1998]. This indicates that experience may play an important role in
the development of these cues,i.e., that we have to understand depth perception as a statistical
learning problem [Knill and Richards, 1996, Rao et al., 2002, Purves and Lotto, 2002]. A
step towards such an understanding is the investigation and use of the statistical relations
between the local 2D structures and the underlying 3D structure for each of these depth cues
[Knill and Richards, 1996, Rao et al., 2002, Purves and Lotto, 2002].

With the notion that the human visual system is adapted to the statistics of
the environment [Brunswik and Kamiya, 1953, Knill and Richards, 1996, Krueger, 1998,
Olshausen and Field, 1996, Rao et al., 2002, Purves and Lotto, 2002, Simoncelli, 2003] and
its successful applications to grouping, object recognition and stereo [Elder and Goldberg, 2002,
Elder et al., 2003, Pugeault et al., 2004, Zhu, 1999], the analysis and the usage of natural im-
age statistics have become an important focus of vision research. Moreover, with the advances
in technology, it has been also possible to analyze the 3D world using 3D range scanners
[Howe and Purves, 2004, Huang et al., 2000, Potetz and Lee, 2003, Yang and Purves, 2003].

In this paper, we analyze first-order and second-order relations‡ between 2D and 3D

‡ In this paper, a relation is first-order if it involves two entities and an event between them. Analogously, a
relation is second-order if there are three entities and (at least) two events between them.
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structures extracted from chromatic 3D range data§. For the first-order analysis, we investigate
the relation between local 2D structures (i.e., homogeneous, edge-like, corner-like or texture-
like structures) and the underlying local 3D structure. As for the second-order analysis, we
investigate the relation between the depth at homogeneous 2D structures and the depth at the
bounding edges.

There have been only a few studies that have analyzed the 3D world from range data
[Howe and Purves, 2004, Huang et al., 2000, Potetz and Lee, 2003, Yang and Purves, 2003],
and these works have only been first-order. In [Yang and Purves, 2003], the distribution of
roughness, size, distance, 3D orientation, curvature and independent components of surfaces
was analyzed. Their major conclusions were: (1) local 3D patches tend to be saddle-like,
and (2) natural scene geometry is quite regular and less complex than luminance images.
In [Huang et al., 2000], the distribution of 3D points was analyzed using co-occurrence
statistics and 2D and 3D joint distributions of Haar filter reactions. They showed that
range images are much simpler to analyze than optical images and that a 3D scene is
composed of piecewise smooth regions. In [Potetz and Lee, 2003], the correlation between
light intensities of the image data and the corresponding range data as well as surface
convexity were investigated. They could justify the event that brighter objects are closer
to the viewer, which is used by shape from shading algorithms in estimating depth. In
[Howe and Purves, 2002, Howe and Purves, 2004], range image statistics were analyzed for
explanation of several visual illusions.

Our first-order analysis differs from these works. For 2D local image patches, existing
studies have only considered light intensity. As for 3D local patches, the most complex
considered representation has been the curvature of the local 3D patch. In this work, however,
we create a higher-order representation of the 2D local image patches and the 3D local
patches; we represent 2D local image patches using homogeneous, edge-like, corner-like or
texture-like structures, and 3D local patches using continuous surfaces and different kinds of
3D discontinuities. By this, we relate established local 2D structures to their underlying 3D
structures.

For the first-order analysis, we compute the conditional likelihoodP (3D Structure| 2D Structure),
by creating 2D and 3D representations of the local structure. Using this likelihood, we quan-
tify some assumptions made by the studies that reconstruct the 3D world from dense range
data. For example, we will show that the depth distribution varies significantly for different
visual features, and we will quantify already established inter-dependencies such as ’no news
is good news’ [Grimson, 1983]. This work also supports the understanding of how intrinsic
properties of 2D–3D relations can be used for the reconstruction of depth, for example, by
using statistical priors in the formalisation of depth cues.

For the second-order analysis, given two proximate co-planar edges, we compute
the ’likelihood field’ of finding co-planar surface patches which project as homogeneous
2D structures in the 2D image. This likelihood field is similar to the ’association
field’ [Field et al., 1993] which is a likelihood field also based on natural image statistics.

§ In this paper, chromatic 3D range data means range data which has associated real-world color information.
The color information is acquired using a digital camera which is calibrated with the range scanner. 86
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The ’likelihood field’ which we compute provides important information about (1) the
predictability of depth at homogeneous 2D structures using the depth available at the bounding
edges and (2) the relative complexity of 3D geometric structure compared to the complexity
of local 2D structures.

The paper is organized as follows: In sections 2 and 3, we define the types of local 2D
structures and local 3D structures and how we extract them for our analysis. In section 4, we
analyze the relation between the local 2D and 3D structures, and discuss the results. In section
5, we present our methods for analyzing the second-order relation between the homogeneous
2D structures and bounding edge structures, and discuss the results. Finally, we conclude the
paper in section 6 with a discussion.

2. Local 2D Structures

Figure 1. How a set of 54 patches map to the different areas of the intrinsic dimensionality
triangle. Some examples from these patches are also shown. The horizontal and vertical
axes of the triangle denote the contrast and the orientation variances of the image patches,
respectively.

We distinguish between the following local 2D structures (examples of each structure is
given in figure 1):

• Homogeneous 2D structures: Homogeneous 2D structures are signals of uniform
intensities, and they are not much made use of in the human visual system because retinal
ganglion cells give only weak sustained responses and adapt quickly at homogeneous
intensities [Bruce et al., 2003].

• Edge–like 2D structures: Edges are low-level structures which constitute the
boundaries between homogeneous or texture-like signals. Detection of edge-like87
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structures in the human visual system starts with orientation sensitive cells in V1
[Hubel and Wiesel, 1969], and biological and machine vision systems depend on their
reliable extraction and utilization [Marr, 1982, Koenderink and Dorn, 1982].

• Corner-like 2D structures: Corners‖ are image patches where two or more edge-like
structures with significantly different orientations intersect (see,e.g., [Guzman, 1968,
Rubin, 2001] for their importance in vision). It has been suggested that the human
visual system makes use of them for different tasks like recovery of surface occlusion
[Guzman, 1968, Rubin, 2001] and shape interpretation [Malik, 1987].

• Texture-like 2D structures: Although there is not a widely-agreed definition, textures are
often defined as signals which consist of repetitive, random or directional structures (for
their analysis, extraction and importance in vision, seee.g., [Tuceryan and Jain, 1998]).
Our world consists of textures on many surfaces, and the fact that we can reliably
reconstruct the 3D structure from any textured environment indicates that human visual
system makes use of and is very good at the analysis and the utilization of textures.
In this paper, we define texture as 2D structures which have low spectral energy and a lot
of orientation variance (see figure 1 and section 2.1).

It is locally hard to distinguish between these ’ideal’ cases, and there are 2D structures
that carry mixed properties of these ’ideal’ cases. The classification of the features outlined
above is a discrete one. However, a discrete classification may cause problems as the inherent
properties of the ”mixed” structures are lost in the discretization process. Instead, in this paper,
we make use of a continuous scheme which is based on the concept of intrinsic dimensionality
(see section 2.1 for more details).

2.1. Detection of Local 2D Structures

In image processing, intrinsic dimensionality (iD) was introduced by [Zetzsche and Barth, 1990]
and was used to formalize adiscrete distinctionbetween edge-like and junction-like struc-
tures. This corresponds to a classical interpretation of local 2D structures in computer vision.

Homogeneous, edge-like and junction-like structures are respectively classified by iD as
intrinsically zero dimensional (i0D), intrinsically one dimensional (i1D)andintrinsically two
dimensional (i2D).

When looking at the spectral representation of a local image patch (see figure 2(a,b)), we
see that the energy of an i0D signal is concentrated in the origin (figure 2(b)-top), the energy
of an i1D signal is concentrated along a line (figure 2(b)-middle) while the energy of an i2D
signal varies in more than one dimension (figure 2(b)-bottom).

It has been shown in [Felsberg and Krüger, 2003, Kr̈uger and Felsberg, 2003] that the
structure of the iD can be understood as a triangle that is spanned by two measures: origin
variance (i.e., contrast) and line variance. Origin variance describes the deviation of the energy
from a concentration at the origin while line variance describes the deviation from a line
structure (see figure 2(b) and 2(c)); in other words, origin variance measures non-homogeneity

‖ In this paper, for the sake of simplicity, junctions are called corners, too.
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Figure 2. Illustration of iD (Sub-figures (a,b) taken from [Felsberg and Krüger, 2003]).(a)
Three image patches for three different intrinsic dimensions.(b) The 2D spatial frequency
spectra of the local patches in (a), from top to bottom: i0D, i1D, i2D.(c) The topology of
iD. Origin variance is variance from a point, i.e., the origin. Line variance is variance from
a line, measuring the junction-ness of the signal. ciND for N = 0, 1, 2 stands for confidence
for being i0D, i1D and i2D, respectively. Confidences for an arbitrary point P is shown in the
figure which reflect the areas of the sub-triangles defined by P and the corners of the triangle.
(d) The decision areas for local 2D structures.

of the signal whereas the line variance measures the junctionness. The corners of the triangle
then correspond to the ’ideal’ cases of iD. The surface of the triangle corresponds to signals
that carry aspects of the three ’ideal’ cases, and the distance from the corners of the triangle
indicates the similarity (or dissimilarity) toideal i0D, i1D and i2D signals.

The triangular structure of the intrinsic dimension is counter-intuitive, in the first place,
since it realizes a two-dimensional topology in contrast to a linear one-dimensional structure
that is expressed in the discrete counting 0, 1 and 2. As shown in [Krüger and Felsberg, 2003,
Felsberg and Kr̈uger, 2003], this triangular interpretation allows for acontinuous formulation
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Figure 3. Computed iD for the image in figure 2, black means zero and white means one.
From left to right:ci0D, ci1D, ci2D and highest confidence marked in gray, white and black for
i0D, i1D and i2D, respectively.

of iD in terms of 3 confidences assigned to each discrete case. This is achieved by first
computing two measurements of origin and line variance which define a point in the triangle
(see figure 2(c)). The bary-centric coordinates (see, e.g., [Coxeter, 1969]) of this point in the
triangle directly lead to a definition of three confidences that add up to one:

ci0D = 1− x, ci1D = x− y, ci2D = y. (1)

These three confidences reflect the volume of the areas of the three sub-triangles which are
defined by the point in the triangle and the corners of the triangle (see figure 2(c)). For
example, for an arbitrary pointP in the triangle, the area of the sub-triangle i0D-P -i1D
denotes the confidence for i2D as shown in figure 2(c). That leads to the decision areas
for i0D, i1D and i2D as seen in figure 2(d). See appendix [Felsberg and Krüger, 2003,
Krüger and Felsberg, 2003] for more details.

For the example image in figure 2, computed iD is given in figure 3.
Figure 1 shows how a set of example local 2D structures map on to it. In figure 1, we

see that different visual structures map to different areas in the triangle. A detailed analysis
of how 2D structures are distributed over the intrinsic dimensionality triangle and how some
visual information depends on this distribution can be found in [Kalkan et al., 2005].

3. Local 3D Structures

To our knowledge, there does not exist a systematic and agreed classification of local 3D
structures like there is for 2D local structures (i.e., homogeneous structures, edges, corners and
textures). Intuitively, the 3D world consists of continuous surface patches and different kinds
of 3D discontinuities. During the imaging process (through the lenses of the camera or the
eye), 2D local structures are generated by these 3D structures together with the illumination
and the reflectivity of the environment.

With this intuition, any 3D scene can be decomposed geometrically into surfaces and 3D
discontinuities. In this context, the local 3D structure of a point can be a:

• Surface Continuity: The underlying 3D structure can be described by one surface whose
normal does not change or changes smoothly (see figure 4(a)). 90
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d)

b)

c)

e)

a)

f)
g)

h)

i)

j)

Figure 4. Illustration of the types of 3D discontinuities.(a) 2D image. (b) Continuity. (c)
Orientation discontinuity.(d) Gap discontinuity.(e) Irregular gap discontinuity.(f)-(j) The
range images corresponding to (a)-(e). Note that the range images are scaled independently
for better visibility.
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Figure 5. 10 of the 20 3D data sets used in the analysis. The points without range information
are marked in blue. The gray image shows the range data of the top-left scene. The horizontal
and the vertical resolutions of the scenes respectively have the following ranges: [512-2048]
and [390-2290]. The average resolution of the scenes is 1140x1001.

• Regular Gap discontinuity: Regular gap discontinuities are occlusion boundaries, whose
underlying 3D structure can be described by a small set of surfaces with a significant
depth difference. The 2D and 3D views of an example gap discontinuity are shown in
figure 4(d).

• Irregular Gap discontinuity: The underlying 3D structure shows high depth-variation
that can not be described by two or three surfaces. An example of an irregular gap
discontinuity is shown in figure 4(e).

• Orientation Discontinuity: The underlying 3D structure can be described by two surfaces
with significantly different 3D orientations that meet at the center of the patch. This type
of discontinuity is produced by a change in 3D orientation rather than a gap between
surfaces. An example for this type of discontinuity is shown in figure 4(c).

One interesting example is 3D corners of, for example, a cube. 3D corners would be
classified as regular gap discontinuities or orientation discontinuities, depending on the view.
If the image patch includes parts of the background objects, then there is a gap discontinuity,
and the 3D corner would be classified as a gap discontinuity. If, however, the camera centers
the corner so that all the adjacent edges of the cube are visible and no parts of other objects
are visible, then the 3D corner would be an orientation discontinuity.

3.1. Detection of Local 3D Structures

In this subsection, we define our measures for the three kinds of discontinuities that we
described above; namely, gap discontinuity, irregular gap discontinuity and orientation
discontinuity. The measures for gap discontinuity, irregular gap discontinuity and orientation92
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discontinuity of a patchP will be denoted byµGD(P ), µIGD(P ) andµOD(P ), respectively.
The reader who is not interested in the technical details can jump directly to section 4.

3D discontinuities are detected in studies which involve range data processing, using
different methods and under different names like two-dimensional discontinuous edge,
jump edge or depth discontinuity for gap discontinuity; and, two-dimensional corner edge,
crease edge or surface discontinuity for orientation discontinuity [Bolle and Vemuri, 1991,
Hoover et al., 1996, Shirai, 1987].

In our analysis, we used chromatic range data of outdoor scenes which were obtained
from Riegl UK Ltd. (http://www.riegl.co.uk/ ). There were 20 scenes in total, 10
of which are shown in figure 5. The range of an object which does not reflect the laser beam
back to the scanner or is out of the range of the scanner cannot be measured. These points
are marked with blue in figure 5 and are not processed in our analysis. The horizontal and
the vertical resolutions of the scenes respectively have the following ranges: [512-2048] and
[390-2290]. The average resolution of the scenes is 1140x1001.

3.1.1. Measure for Gap Discontinuity:µGD

Gap discontinuities can be measured or detected in a similar way than edges in 2D images;
edge detection processes RGB-coded 2D images while for a gap discontinuity, one needs to
process XYZ-coded 2D images¶. In other words, gap discontinuities can be measured or
detected by taking the second order derivative of XYZ values [Shirai, 1987].

Measurement of a gap discontinuity is expected to operate on both the horizontal and the
vertical axes of the 2D image; that is, it should be a two dimensional function. The alternative
is to discard the topology and do an ’edge-detection’ in sorted XYZ values,i.e., to operate
as a one-dimensional function. Although we are not aware of a systematic comparison of
the alternatives, for our analysis and for our data, the topology-discarding gap discontinuity
measurement captured the underlying 3D structure better (of course, qualitatively,i.e., by
visual inspection). Therefore, we have adopted the topology-discarding gap discontinuity
measurement in the rest of the paper.

For an image patchP of sizeN ×N , let,

X = ascendingsort({Xi | i ∈ P}),
Y = ascendingsort({Yi | i ∈ P}), (2)

Z = ascendingsort({Zi | i ∈ P}),

and also, fori = 1, .., (N ×N − 2),

X∆ = { | (Xi+2 −Xi+1)− (Xi+1 −Xi) | },
Y∆ = { | (Yi+2 − Yi+1)− (Yi+1 − Yi) | }, (3)

Z∆ = { | (Zi+2 −Zi+1)− (Zi+1 −Zi) | },

whereXi,Yi,Zi represents 3D coordinates of pixeli. Equation 3 takes the absolute value of
the [+1, −2, +1] operator.

¶ Note that XYZ and RGB coordinate systems are not the same. However, detection of gap discontinuity in
XYZ coordinates can be assumed to be a special case of edge detection in RGB coordinates. 93
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Figure 6. Example histograms and the number of clusters that the functionψ(S) computes.
ψ(S) finds one cluster in the left histogram and two clusters in the right histogram. Red
line marks the threshold value of the function. X axis denotes the values for 3D orientation
differences.

The setsX∆,Y∆ and Z∆ are the measurements of the jumps (i.e., second order
differentials) in the setsX ,Y andZ, respectively. A gap discontinuity can be defined simply
as a measure of these jumps in these sets. In other words:

µGD(P ) =
h(X∆) + h(Y∆) + h(Z∆)

3
, (4)

where the functionh : S → [0, 1] over the setS measures the homogeneity of its argument
set (in terms of its ’peakiness’) and is defined as follows:

h(S) =
1

#(S)
×

∑
i∈S

si

max(S)
, (5)

where#(S) is the number of the elements ofS, andsi is theith element of the setS. Note
that as a homogeneous set (i.e., a non-gap discontinuity)S produces a highh(S) value, a gap
discontinuity causes a lowµGD value. Figure 8(c) shows the performance ofµGD on one of
our scenes shown in figure 5.

It is known that derivatives like in equations 2 and 3 are sensitive to noise. Gaussian-
based functions could be employed instead. In this paper, we chose simple derivatives for
their faster computation times, and instead employed a more robust processing stage (i.e.,
analyzing the uniformity of the distribution of derivatives) to make the measurement more
robust to noise. As shown in figure 8(c), this method can capture the underlying 3D structure
well.

3.1.2. Measure for Orientation Discontinuity:µOD

The orientation discontinuity of a patchP can be detected or measured by taking the 3D
orientation difference between the surfaces that meet inP . If the size of the patchP is
small enough, the surfaces can be, in practice, approximated by 2-pixel wide unit planes+.

+ Note that using bigger planes have the disadvantage of losing accuracy in positioning which is very crucial
for the current analysis.

94
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The histogram of the 3D orientation differences between every pair of unit planes forms one
cluster for continuous surfaces and two clusters for orientation discontinuities.

For an image patchP of sizeN × N pixels, the orientation discontinuity measure is
defined as:

µOD(P ) = ψ(Hn({α(i, j) | i, j ∈ planes(P ), i 6= j})), (6)

whereHn(S) is a function which computes then-bin histogram of its argument setS; ψ(S)

is a function which finds the number of clusters inS; planes(P ) is a function which fits 2-
pixel-wide unit planes to 1-pixel apart points inP using Singular Value Decomposition∗; and,
α(i, j) is the angle between planesi andj.

For a histogramH of sizeNH , the number of clusters is given by:

ψ(S) =

∑NH+1
i=1 neq([Hi > max(H)/10], [Hi−1 > max(H)/10])

2
, (7)

where the functionneq returns1 if its parameters are not equal and returns0, otherwise;
Hi represents theith element of the histogramH; H0 andHNH+1 are defined as zero; and,
max(H)/10 is an empirically set threshold. Figure 6 shows two example clusters for a
continuous surface and an orientation discontinuity.

Figure 8(d) shows the performance ofµOD on one of our scenes shown in figure 5.

3.1.3. Measure for Irregular Gap Discontinuity:µIGD

Irregular gap discontinuity of a patchP can be measured using the observation that an
irregular-gap discontinuous patch in a real image usually consists of small surface fragments
with different 3D orientations. Therefore, the spread of the 3D orientation histogram of a
patch P can measure the irregular gap discontinuity ofP .

Similar to the measure for orientation discontinuity defined in sections 3.1.1 and 3.1.2,
the histogram of the differences between the 3D orientations of the unit planes (which are of
2 pixels wide) is analyzed. For an image patchP of sizeN × N pixels, the irregular gap
discontinuity measure is defined as:

µIGD(P ) = h(Hn({α(i, j) | i, j ∈ planes(P ), i 6= j})), (8)

whereplanes(P ), α(i, j),Hn(S) andh(S) are as defined in section 3.1.2. Figure 8(e) shows
the performance ofµIGD on one of our scenes shown in figure 5.

3.1.4. Combining the Measures
The relation between the measurements and the types of the 3D discontinuities are outlined

in table 1 which entails that an image patchP is:

• gap discontinuous ifµGD(P ) < Tg andµIGD(P ) < Tig,

• irregular-gap discontinuous ifµGD(P ) < Tg andµIGD(P ) > Tig,

• orientation discontinuous ifµGD(P ) ≥ Tg andµOD > 1,

∗ Singular Value Decomposition is a standard technique for fitting planes to a set of points. It finds the perfectly
fitting plane if it exists; otherwise, it returns the least-squares solution. 95
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Figure 7. Results of the combined measures on artificial data. The camera and the range
scanner are denoted by c. (a) Gap discontinuity tests. There are two planes which are separated
by a distance d where d= 0, 0.01, 0.02, 0.03, 0.04 meters. (b) The detected discontinuities.
Dark blue marks the boundary points where the measures are not applicable. Blue and
orange respectively correspond to detected continuities and gap discontinuities. (c) Orientation
discontinuity tests. There are two planes which are connected but separated with an angle a
where a=180, 171, 153, 117, 90 degrees. (d) The detected discontinuities. Dark blue marks
the boundary points where the measures are not applicable. Blue and green respectively
correspond to detected continuities and orientation discontinuities.

• continuous ifµGD(P ) ≥ Tg andµOD(P ) ≤ 1.

For our analysis,N , whereNxN is the size of the patches is set to 10 pixels. Bigger values
for N means larger support region for the measures, in which case different kinds of 3D
discontinuities might interfere in the patch. On the other hand, using smaller values would
make the measures very sensitive to noise. Other thresholdsTg andTig are respectively set
to 0.4 and0.6. These values are empirically determined by testing the measures over a large
set of samples. Different values for these thresholds may result in wrong classifications of
local 3D structures and may lead to different results than presented in this paper. Similarly,
the number of bins,n, inHn is empirically determined as 20.

Figure 7 shows the performance of the measures on two artificial scenes, one for gap
discontinuity and one for orientation discontinuity for a set of depth and angle differences
between planes. In the figure, the detected discontinuity type is shown for each pixel. We see
that gap discontinuity can be detected reliable even if the gap difference is low. The sensitivity
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a) b)

d)c) e)

Figure 8. The 3D and 2D information for one of the scenes shown in figure 5. Dark
blue marks the points without range data.(a) 3D discontinuity. Blue: continuous surfaces,
light blue: orientation discontinuities, orange: gap discontinuities and brown: irregular gap
discontinuities. (b) Intrinsic Dimensionality. Homogeneous patches, edge-like and corner-
like structures are encoded in colors brown, yellow and light blue, respectively.(c) Gap
discontinuity measureµGD. (d) Orientation discontinuity measureµOD. (e) Irregular gap
discontinuity measureµIGD.

Dis. Type µGD µIGD µOD

Continuity High value Don’t care 1

Gap Dis. Low value Low value Don’t care
Irregular Gap Dis. Low value High value Don’t care
Orientation Dis. High value Don’t care > 1

Table 1. The relation between the measurements and the types of the 3D discontinuities.

of the orientation discontinuity measure is around 160 degrees. However, the sensitivity of
the measures would be different in real scenes due to the noise in the range data.

For a real example scene from figure 5, the detected discontinuities are shown in figure
8(a). We see that the underlying 3D structure of the scene is reflected in figure 8(a).

Note that this categorical combination of the measures appears to be against the
motivation that has been provided for the classification of local 2D structures where we had
advocated a continuous approach. There are two reasons: (1) With continuous 3D measures,
the dimensionality of the results would be four (origin variance, line variance, a 3D measure
and the normalized frequency of the signals), which is difficult to visualize and analyse. In97
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fact, the number of triangles that had to be shown in figure 9 would be 12, and it would be
very difficult to interpret all the triangles together. (2) It has been argued by several studies
[Huang et al., 2000, Yang and Purves, 2003] that range images are much simpler and less
complex to analyze than 2D images. This suggests that it might be safer to have a categorical
classification for range images.

4. First-order Statistics: Analysis of the Relation Between Local 3D and 2D Structure

In this section, we analyze the relation between local 2D structures and local 3D structure;
namely, the likelihood of observing a 3D structure given the corresponding 2D structure (i.e.,
P (3D Structure| 2D Structure)).

4.1. Results and Discussion

For each pixel of the scene (except where range data is not available), we computed the 3D
discontinuity type and the intrinsic dimensionality. Figures 8(a) and (b) show the images
where the 3D discontinuity and the intrinsic dimensionality of each pixel are marked with
different colors.

Having the 3D discontinuity type and the information about the local 2D structure of
each point, we wanted to analyze what the likely underlying 3D structure is for a given
local 2D structure; that is, the conditional likelihoodP (3D Discontinuity | 2D Structure).
Using the available 3D discontinuity type and the information about the local 2D structure,
other measurements or correlations between the range data and the image data could also be
computed in a further study.

P (3D Discontinuity| 2D Structure) is shown in figure 9. Note that the four triangles in
figures 9(a), 9(b), 9(c) and 9(d) add up to one for all points of the triangle.

In figure 10, maximum likelihood estimates (MLE) of local 3D structures given local 2D
structures are provided. Figure 10(a) shows the MLE from the distributions in figure 9. Due
to high likelihoods, gap discontinuities and continuities are the most likely estimates given
local 2D structures. Figure 10(b) shows the MLE from thenormalizeddistributions:i.e., each
triangle in figure 9 is normalized within itself so that its maximum likelihood is 1. This way
we can see the mostly likelylocal 2D structuresfor different local 3D structures.

• Figure 9(a) shows that homogeneous 2D structures are very likely to be formed by 3D
continuities as the likelihoodP (Continuity| 2D Structure) is very high (bigger than 0.85)
for the area where homogeneous 2D structures exist (marked with H in figure 9(a)). This
observation is confirmed in the MLE estimates of figure 10.
Many surface reconstruction studies make use of a basic assumption that there is a
smooth surface between any two points in the 3D world, if there is no contrast difference
between these points in the image. This assumption has been first called as ’no news is
good news’ in [Grimson, 1983]. Figure 9(a) quantifies ’no news is good news’ and shows
for which structures and to what extent it holds: In addition to the fact that no news is
in fact good news, figure 9(a) shows that news, especially texture-like structures and98
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Figure 9. P (3D Discontinuity | 2D Structure). The schematic insets indi-
cate the locations of the different types of 2D structures inside the triangle for
easy reference (the letters C, E, H, T represent corner-like, edge-like, homo-
geneous and texture-like structures). (a) P (Continuity | 2D Structure). (b)
P (Gap Discontinuity| 2D Structure). (c) P (Irregular Gap Discontinuity| 2D Structure). (d)
P (Orientation Discontinuity| 2D Structure).

edge-like structures, can also be good news (see below). Homogeneous 2D structures
cannot be used for depth extraction by correspondence-based methods, and only weak
or no information from these structures is processed by the cortex. Unfortunately, the
vast majority of local image structure is of this type (see,e.g., [Kalkan et al., 2005]).
On the other hand, homogeneous structures indicate ’no change’ in depth which is the
underlying assumption of interpolation algorithms.

• Edges are considered as important sources of information for object recognition and
reliable correspondence finding. Approximately 10% of local 2D structures are of that
type (see,e.g., [Kalkan et al., 2005]). Figures 9(a), (b) and (d) together with the MLE
estimates in figure 10 show that most of the edges are very likely to be formed by99
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(a) (b)

Figure 10. Maximum likelihood estimates of local 3D structures given local 2D structures.
Numbers 1, 2, 3 and 4 represent continuity, gap discontinuity, orientation discontinuity and
irregular gap discontinuity, respectively.(a) Raw maximum likelihood estimates. Note that
the estimates are dominated by continuities and gap discontinuities.(b) Maximum likelihood
estimates from normalized likelihood distributions: the triangles provided in figure 9 are
normalized within themselves so that the maximum likelihood ofP (X | 2D Structure) is 1 for
X being continuity, gap discontinuity, irregular gap discontinuity and orientation discontinuity.

continuous surfaces or gap discontinuities. Looking at the decision areas for different
local 2D structures shown in figure 2(d), we see that the edges formed by continuous
surfaces are mostly low-contrast edges (figure 9(a));i.e., the origin variance is close to
0.5. Little percentage of the edges are formed by orientation discontinuities (figure 9(d)).

• Figures 9(a) and (b) show that well-defined corner-like structures are formed by either
gap discontinuities or continuities.

• Figures 9(d) and 10 show that textures also are very likely to be formed by surface
continuities and irregular gap discontinuities.
Finding correspondences becomes more difficult with the lack or repetitiveness of
the local structure. The estimates of the correspondences at texture-like structures
are naturally less reliable. In this sense, the likelihood that certain textures are
formed by continuous surfaces (shown in figure 9(a)) can be used to model stereo
matching functions that include interpolation as well as information about possible
correspondences based on the local image information.
It is remarkable that local 2D structures mapping to different sub-regions in the triangle

are formed by rather different 3D structures. This clearly indicates that these different 2D
structures should be used in different ways for surface reconstruction.

100
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(a) (b) (c)

Figure 11. Illustration of the relation between the depth of homogeneous 2D structures and
the bounding edges.(a) In the case of the cube, the depth of homogeneous image area and
the bounding edges are related. However, in the case of round surfaces,(b) the depth of
homogeneous 2D structures may not be related to the depth of the bounding edges.(c) In the
case of a cylinder, we see both cases of the relation as illustrated in (a) and (b).

5. Second-Order Statistics: Analysis of Co-planarity between 3D Edges and
Continuous Patches

As already mentioned in section 1, it is not possible to extract depth at homogeneous 2D
structures (in the rest of the paper, a homogeneous 2D structure that corresponds to a 3D
continuity will be called amono) using methods that make use of multiple views for 3D
reconstruction. In this section, by making use of the ground truth range data, we investigate
co-planarity relations between the depth at homogeneous 2D structures and the edges that
bound them. This relation is illustrated for a few examples in figure 11.

For the analysis, we used the chromatic range data set that we also used for the first-order
analysis in section 4. Samples from the dataset are displayed in figure 5.

In the following subsection, we explain how we analyze the relation. The results are
presented and discussed in section 5.2.

5.1. Methods

This subsection provides the procedural details of how the analysis is performed.
The analysis is performed in three stages: First, local 2D and 3D representations of the

scene are extracted from the chromatic range data. Second, a data set is constructed out of
each pair of edge features, associating the monos that are likely to be coplanar to those edges
to them (see section 5.1.2 for what we mean by relevance). Third, the coplanarity between the
monos and the edge features that they are associated to are investigated. An overview of the
analysis process is sketched in figure 12, which roughly lists the steps involved.

5.1.1. Representation
Using the 2D image and the associated 3D range data, a representation of the scene is

created in terms of local compository 2D and 3D features denoted byπ. In this process,
first, 2D features are extracted from the image information, and at the locations of these 2D101
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Figure 12. Overview of the analysis process. First, local 2D and 3D representations of the
scene are extracted from the chromatic range data. Second, a data set is constructed out of each
pair of edge features, associating the monos that are likely to be coplanar (i.e., ”interesting”)
to them (see section 5.1.2 for what we mean by relevance). Third, the coplanarity between the
monos and the edge features that they are associated to are investigated.

features, 3D features are computed. The complementary information from the 2D and 3D
features are then merged at each valid position, where validity is only defined by having
enough range data to extract a 3D representation.

For homogeneous and edge-like structures, different representations are needed due to
different underlying structures. For this reason, we have two different definitions ofπ denoted
respectively byπe (for edge-like structures) andπm (for monos) and formulated as:

πm = (X3D,X2D, c,p), (9)

πe = (X3D,X2D, φ2D, c1, c2,p1,p2), (10)

whereX3D andX2D denote 3D and 2D positions of the 3D entity;φ2D is the 2D orientation
of the 3D entity;c1 andc2 are the 2D color representation of the surfaces of the 3D entity;c

represents the color ofπm; p1 andp2 are the planes that represent the surfaces that meet at
the 3D entity; andp represents the plane ofπm (see figure 13). Note thatπm does not have
any 2D orientation information (because it is undefined for homogeneous structures), andπe

has two color and plane representations to the ’left’ and ’right’ of the edge.
The process of creating the representation of a scene is illustrated in figure 13.
In our analysis, the entities are regularly sampled from the 2D information. The sampling

size is 10 pixels. See [Krüger et al., 2003, Kr̈uger and Ẅorgötter, 2005] for details.
Extraction of the planar representation requires knowledge about the type of local 3D

structure of the 3D entity (see figure 13). Namely, if the 3D entity is a continuous surface,
then only one plane needs to be extracted; if the 3D entity is an orientation discontinuity, then
there will be two planes for extraction; if the 3D entity is a gap discontinuity, then there will
also be two planes for extraction.

In the case of a continuous surface, a single plane is fitted to the set of 3D points in
the 3D entity in question. For orientation discontinuous 3D structures, extraction of the102
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2D image Range image Discont. image

Local 2D Representation Local 3D Representation
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πm = (X3D,X2D, c,p)

πe = (X3D,X2D, φ2D, c1, c2,p1,p2)

Figure 13. Illustration of the representation of a 3D entity. From the 2D and 3D information,
local 2D and 3D representation is extracted.

planar representation is not straight-forward. For these structures, our approach was to fit
unit-planes− to the 3D points of the 3D entity and find the two clusters in these planes using
k-means clustering of the 3D orientations of the small planes. Then, one plane is fitted for
each of the two clusters, producing the bi-fold planar representation of the 3D entity.

Color representation is extracted in a similar way. If the image patch is a homogeneous
structure, then the average color of the pixels in the patch is taken to be the color
representation. If the image patch is edge-like, then it has two colors separated by the line
which goes through the center of the image patch and which has the 2D orientation of the
image patch. In this case, the averages of the colors of the different sides of the edge define
the color representation in terms ofc1 and c2. If the image patch is corner-like, the color
representation becomes undefined.

5.1.2. Collecting the Data Set
In our analysis, we form pairs out ofπes that are close enough (see below), and for each

pair, we check whether monos in the scene are coplanar to the elements of the pair or not.
As there are plenty of monos in the scene, we only consider a subset of monos for each pair
of πe that we suspect to be relevant to the analysis because otherwise, the analysis becomes
computationally intractable. The situation is illustrated in figure 14(a). In this figure, twoπe

and three regions are shown; however, only one of these regions (i.e., region A) is likely to

− By unit-planes, we mean planes that are fitted to the 3D points that are 1-pixel apart in the 2D image. 103
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Figure 14. (a) Given a pair of edge features, coplanarity relation can be investigated for
homogeneous image patches inside regions A, B and C. However, due to computational
intractability reasons, this paper is concerned in making the analysis only in region A (see
the text for more details).(b)-(d) A few different configurations of edge features that might
be encountered in the analysis. The difficult part of the investigation is to make these different
configurations comparable, which can be achieved by fitting a shape (like square, rectangle,
circle, parallelogram, ellipse) to these configurations.(e) The ellipse, among the alternative
shapes (i.e., square, rectangle, circle, parallellogram) turns out to describe the different
configurations shown in (b)-(d) better. For this reason, ellipse is for analyzing coplanarity
relations in the rest of the paper. See the text for details on how the parameters of the ellipse
are set.

have coplanar monos (e.g., see figure 11(a)). Thisassumptionis based on the observation of
how objects are formed in the real world: objects have boundaries which consists of edge-like
structures who bound surfaces, or image areas, of the object. The image area that is bounded
by a pair of edge-like structures is likely to be the area that has the normals of both structures.
For convex surfaces of the objects, the area that is bounded belongs to the object; however, in
the case of concave surfaces, the area covered may also be from other objects, and the extent
of the effect of this is part of the analysis.

LetP denote the set of pairs of proximateπes whose normals intersect.P can be defined
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as:

P =
{
(πe

1, π
e
2) | ∀πe

1, π
e
2, π

e
1 ∈ Ω(πe

2), I(⊥ (πe
1),⊥ (πe

2))
}
, (11)

whereΩ(πe) is the N-pixel-2D-neighborhood ofπeo; ⊥ (πe) is the 2D line orthogonal to the
2D orientation ofπe, i.e., the normal ofπe; and,I(l1, l2) is true if the linesl1 andl2 intersect.
We have taken N to be 100.

It turns out that there are a lot of different configurations possible for a pair of edge
features based on relative position and orientation, which are illustrated for a few cases in
figure 14(b)-(d). The difficult part of the investigation is to be able to compare these different
configurations. One way to achieve this is to fit a shape to region A which cannormalizethe
coplanarity relations by its size in order to make them comparable (see section 5.2 for more
information).

The possible shapes would be square, rectangle, parallelogram, circle and ellipse.
Among the alternatives, it turns out that an ellipse (1) is computationally cheap and (2) fits to
different configurations ofπ1 andπ2 under different orientations and distanceswithoutleaving
region A much. Figure 14(e) demonstrates the ellipse generated by an example pair of edges
in figure 14(a). The center of the ellipse is at the intersection of the normals of the edges,
which we callthe intersection point(IP) in the rest of the paper.

The parameters of an ellipse are composed of two focus pointsf1, f2 and the minor axis
b. In our analysis, the more distant 3D edge determines the foci of the ellipse (and, hence,
the major axis), and the other 3D edge determines the length of the minor axis. Alternatively,
the ellipse can be constructed by minimizing an energy functional which optimizes the area
of the ellipse inside region A and going through the featuresπ1 andπ2. However, for the sake
of speed issues, the ellipse is constructed without optimization.

See appendix A.1 for details on how we determine the parameters of the ellipse.
For each pair of edges inP, the region to analyze coplanarity is determined by

intersecting the normals of the edges. Then, the monos inside the ellipse are associated to
the pair of edges.

Note that aπe has two planes that represent the underlying 3D structure. Whenπes
become associated to monos, only one plane, the one that points into the ellipse, remains
relevant. Letπse denote the semi-representation ofπe which can be defined as:

πse = (X3D,X2D, c,p). (12)

Note thatπse is equivalent to the definition ofπm in equation 10.
Let T denote the data set which storesP and the associated monos which can be

formulated as:

T = {(πse
1 , π

se
2 , π

m) | (πe
1, π

e
2) ∈ P , πm ∈ Sm, πm ∈ E(πe

1, π
e
2)}, (13)

whereSm is the set of allπm.
A pair of πes and the set of monos associated to them are illustrated in figure 15. The

figure shows the edges and the monos (together with ellipse) in 2D and 3D.

o In other words, the Euclidean image distance between the structures should be less than N.
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(a) (b)

(c) (d)

Figure 15. Illustration of a pair ofπe and the set of monos associated to them.(a) The input
scene. A pair of edges (marked in blue) and the associated monos (marked in green) with an
ellipse (drawn in black) around them shown on the input image. See (c) for a zoomed version.
(b) The 3D representation of the scene in our 3D visualization software. This representation
is created from the range data corresponding to (a) and is explained in the text.(c) The part
of the input image from (a) where the edges, the monos and the ellipse are better visible.(d)
A part of the 3D representation (from (b)) corresponding to the pair of edges and the monos
in (c) is displayed in detail where the edges are shown with blue margins; the monos with the
edges are shown in green (all monos are coplanar with the edges). The 3D entities are drawn
in rectangles because of the high computational complexity for drawing circles.

5.1.3. Definition of coplanarity
Two entities are coplanar if they are on the same plane. Coplanarity of edge features and

monos is equivalent to coplanarity of two planar patches: two planar patchesA andB are
coplanar if (1) they are parallel and (2) the planar distance between them is zero.

See appendix A.2 for more information.

5.2. Results and Discussions

The data setT defined in equation 13 consists of pairs ofπe
1, π

e
2 and the associated monos.

Using this set, we compute the likelihood that a mono is coplanar withπe
1and/orπe

2 against a
distance measure.

The results of our analysis are shown in figures 16 and 18 and 19.
In figure 16(b), the likelihood of the coplanarity of a mono against the distance toπe

1 or
πe

2 is shown. This likelihood can be denoted formally asP (cop(πm, πe
1 & πe

2) | dN(πm, πe))
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Figure 16. Likelihood distribution of coplanarity of monos. In each sub-figure, left-plot
shows the likelihood distribution whereas right-plot shows the frequency distribution. (a) The
likelihood of the coplanarity of a mono withπe

1 or πe
2 against the distance toπe

1 or πe
2. This is

the unconstrained case;i.e., the case where there is no information about the coplanarity ofπe
1

andπe
2. (b) The likelihood of the coplanarity of a mono withπe

1 andπe
2 against the distance to

πe
1 or πe

2.
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Figure 17. Likelihoods from figures 16(a) and 16(b) with a morestrict coplanarity relation
(namely, we set the thresholdsTp andTd to 10 degrees and 0.2, respectively. See Appendix
for more information about these thresholds).(a) Figure 16(a) with more strict coplanarity
relation.(b) Figure 16(b) with more strict coplanarity relation.

wherecop(πm, πe
1 & πe

2) is defined ascop(πe
1, π

e
2) ∧ cop(πm, πe), andπe is eitherπe

1 or πe
2.
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Figure 18. The likelihood of the coplanarity of a mono against the distance toIP . Left-plot
shows the likelihood distribution whereas right-plot shows the frequency distribution.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

P( cop(πm,  πe
1
 & πe

2
)   |  d

N
(πm, πe

1
), d

N
(πm, πe

2
))

d
N

(πm, πe
1
)

d N
(π

m
, π

e 2)

0

0.2

0.4

0.6

0.8

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
# of πm

d
N

(πm, πe
1
)

d N
(π

m
, π

e 2)

0

500

1000

1500

2000

2500

3000

3500

Figure 19. The likelihood of the coplanarity of a mono against the distance toπe
1 andπe

2. Left-
plot shows the likelihood distribution whereas right-plot shows the frequency distribution.

The normalized distance measure] dN(πm, πe) is defined as:

dN(πm, πe) =
d(πm, πe)

2
√
d(πe

1, IP )2 + d(πe
2, IP )2

, (14)

whereπe is eitherπe
1 or πe

2, andIP is the intersection point ofπe
1 andπe

2. We see in figure
16(b) that the likelihood decreases when a mono is more distant from an edge. However,
when the distance measure gets closer to one, the likelihood increases again. This is because,
when a mono gets away from eitherπe

1 or πe
2, it gets closer to the otherπe.

In figure 16(a), we see the unconstrained case of figure 16(b);i.e., the case where
there is no information about the coplanarity ofπe

1 and πe
2; namely, the likelihood

P (cop(πm, πe) | dN(πm, πe)) whereπe is eitherπe
1 or πe

2. The comparison with figure 16(b)
shows that the existence of another edge in the neighborhood increases the likelihood of
finding coplanar structures. As there is no other coplanar edge in the neighborhood, the
likelihood does not increase when the distance is close to one (compare with figure 16(b)).

] In the following plots, the distance means the Euclidean distance in the image domain.
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It is intuitive to expect symmetries in figure 16. However, as (1) the roles ofπe
1 andπe

2

in the ellipse are fixed, and (2) oneπe is guaranteed to be on the major axis, and the otherπe

may or may not be on the minor axis, the symmetry is not observable in figure 16.
To see the effect of the coplanarity relation on the results, we reproduced figures 16(a)

and 16(b) with a morestrict coplanarity relation (namely, we set the thresholdsTp andTd to
10 degrees and 0.2, respectively. See Appendix for more information about these thresholds).
The results with more constrained coplanarity relation are shown in figure 17. Although the
likelihood changes quantitatively, the figure shows the qualitative behaviours that have been
observed with the standard thresholds. Moreover, we cross-checked the results for subsets of
the original dataset (results not provided here) and confirmed the same qualitative results.

In figure 18, the likelihood of the coplanarity of a mono against the distance toIP (i.e.,
P (cop(πm, πe

1 & πe
2) | dN(πm, IP ))) is shown. We see in the figure that the likelihood shows

a flat distribution against the distance to IP.
In figure 19, the likelihood of the coplanarity of a mono against the distance toπe

1 andπe
2

(i.e., P (cop(πm, πe
1 & πe

2) | dN(πm, πe
1), dN(πm, πe

2))) is shown. We see that whenπm is close
to πe

1 or πe
2, it is more likely to be coplanar withπe

1 andπe
2 than when it is equidistant to both

edges. The reason is that, whenπm moves away from an equidistant point, it becomes closer
to the other edge, in which case the likelihood increases as shown in figure 16(b).

The results, especially figures 16(b) and 16(a) confirm the importance of the relation
illustrated in figure 11(a).

6. Discussion

6.1. Summary of the findings

Section 4.1 analyzed the likelihoodP (3D Structure| 2D Structure). In this section, we
confirm and quantify the assumptions used in several surface interpolation studies. Our main
findings from this section are as follows:

• As expected, homogeneous 2D structures are formed by continuous surfaces.

• Surprisingly, considerable amount of edges and texture-like structures are likely to be
formed by continuous surfaces too. However, we confirm the expectation that gap
discontinuities and orientation discontinuities are likely to be the underlying 3D structure
for edge-like structures. As for texture-like structures, they may also be formed by
irregular gap discontinuities.

• Corner-like structures, on the other hand, are mainly formed by gap discontinuities.

In section 5.2, we investigated the predictability of depth at homogeneous 2D structures.
We confirm the basic assumption that closer entities are very likely to be coplanar. Moreover,
we provide results showing that this likelihood increases if there are more edge features in the
neighborhood.
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6.2. Interpretation of the findings

Existing psychophysical experiments (see,e.g., [Anderson et al., 2002, Collett, 1985]), com-
putational theories (see,e.g., [Barrow and Tenenbaum, 1981, Grimson, 1982, Terzopoulos, 1988])
and the observation that humans can perceive depth at weakly textured areas suggest that in
the human visual system,an interpolation processis realized that, starting with the local
analysis of edges, corners and textures, computes depth also in areas where correspondences
cannot easily be found.

This paper was concerned with the analysis of the statistics that might be involved in
such an interpolation process, by making use of chromatic range data.

In the first part (section 4), we analyzed which local 2D structures suggest a depth
interpolation process. Using natural images, we showed that homogeneous 2D structures
correspond to continuous surfaces, as suggested and utilized by some computational theories
of surface interpolation (see,e.g., [Grimson, 1983]). On the other hand, a considerable
proportion of edge-like structures lie on continuous surfaces (see figure 9(a));i.e., a contrast
difference does not necessarily mean a depth discontinuity. This suggests that interpreting
edges in combination with neighboring corners or edges is important for understanding the
underlying 3D structure [Barrow and Tenenbaum, 1981].

The results from section 4 are useful in several contexts:

• Depth interpolation studies assume that homogeneous image regions are part of the same
surface. Such studies can be extended with the statistics provided here as priors in a
Bayesian framework. This extension would allow making use of the continuous surfaces
that a contrast difference (caused by textures or edge-like structures) might correspond
to.
Acquiring range data from a scene is a time-consuming task compared to image
acquisition, which lasts on the order of seconds even for high resolutions. In
[Torres-Mendez and Dudek, 2006], for mobile robot environment modeling, instead of
making a full-scan of the whole scene, only partial range scan is performed due to time
constraints. This partial range data is completed by using a Markov Random Field
which is trained from a pair of complete range and the corresponding image data. In
[Torres-Mendez and Dudek, 2006], the partial range data is produced in a regular way;
i.e., everynth scan-column is neglected. This assumption, however, may introduce
aliasing in the 3D data acquired from natural images using depth cues, and therefore,
their method may not be applicable. Nevertheless, it could possibly be improved by
utilizing the priors introduced in this paper.

• Automated registration of range and color images of a scene is crucial for several
purposes like extracting 3D models of real objects. Methods that align edges
extracted from the intensity image with the range data already exist (see,e.g.,
[Laycock and Day, 2006]). These methods can be extended with the results presented
in this paper in a way that not only edges but also other 2D structures are used for
alignment. Such an extension also allows a probabilistic framework by utilizing the
likelihoodP (3D Structure| 2D Structure). Moreover, making use of local 3D structure 110
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types that are introduced in this paper can be more robust than just a gap discontinuity
detection.
Such an extension is possible by maximizing the following energy function:

E(R, T ) =
∫

u,v
P ( 3D Structure at(u, v) | 2D Structure at(u, v))dudv,(15)

whereR andT are translation and rotation of the range data in 3D space.

In the second part (section 5), we analyzed whether depth at homogeneous 2D structures
is related to the depth of edge-like structures in the neighborhood. Such an analysis is
important for understanding the possible mechanisms that could underlie depth interpolation
processes. Our findings show that an edge feature provides significant evidence for making
depth prediction at a homogeneous image patch that is in the neighborhood. Moreover, the
existence of a second edge feature in its neighborhood which is not collinear with the first
edge feature increases the likelihood of the prediction.

Using second order relations and higher order features for representing the 2D image and
3D range data, we produce confirming results that the range images are simpler to analyze
compared to 2D images (see, [Huang et al., 2000, Yang and Purves, 2003]).

By extracting a more complex representation than existing range-data analysis studies,
we could point to the intrinsic properties of the 3D world and its relation to the image data.
This analysis is important because (1) it may be that the human visual system is adapted
to the statistics of the environment [Brunswik and Kamiya, 1953, Knill and Richards, 1996,
Krueger, 1998, Olshausen and Field, 1996, Purves and Lotto, 2002, Rao et al., 2002], and (2)
it may be used in several computer vision applications (for example, depth estimation)
in a similar way as in [Elder and Goldberg, 2002, Elder et al., 2003, Pugeault et al., 2004,
Zhu, 1999].

In our current work, the likelihood distributions are being used for estimating the 3D
depth at homogeneous 2D structures from the depth of bounding edge-like structures.

6.3. Limitations of the current work

The first limitation is due to the type of scenes that have been used;i.e., scenes of man-made
environments which also included trees. Alternative scenes could include pure forest scenes
or scenes taken from an environment with totally round objects. However, we believe that our
dataset captures the general properties of the scenes that a human being encounters in daily
life.

Different scenes might produce quantitatively different but qualitatively similar results.
For example, forest scenes would produce much more irregular gap discontinuities than the
current scenes; however, our conclusions regarding the link between textures and irregular gap
discontinuities would still hold. Moreover, coplanarity relations would be harder to predict for
such scenes since (depending on the scale) surface continuities are harder to find; however, on
a bigger scale, some forest scenes are likely to produce the same qualitative results presented
in this paper because of piecewise planar leaves which are separated by gap discontinuities.
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It should be noted that acquisition of range data with color images is very hard for forest
scenes since the color image of the scene is taken after the scene is scanned with the scanner.
During this period, the leaves and the trees may move (due to wind etc.), making the range
and the color data inconsistent. In office environments, a similar problem arises: due to lateral
separation between the digital camera and range scanner, there is the parallax problem, which
again produces inconsistent range-color association. For an office environment, a small-scale
range scanner needs to be used.

The statistics presented in this paper can be extended by analyzing forest scenes, office
scenes etc. independently. The comparison of such independent analyses should provide more
insights into the relations that this paper have investigated but we believe that the qualitative
conclusions of this paper would still hold.

It would be interesting to see the results presented in the paper by changing the measure
for surface continuity so that it can separate planar and curved surfaces. We believe that such
a change would effect only the second part of the paper.
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Appendix

A.1. Parameters of an ellipse

Let us denote the position of two 3D edgesπe
1, π

e
2 by (X2D)1 and(X2D)2 respectively. The

vectors between the 3D edges and IP (let us calll1 andl2) can be defined as:

l1 = ((X2D)1 − IP ),

l2 = ((X2D)2 − IP ). (16)

Having definedl1 andl2, the ellipseE(πe
1, π

e
2) is as follows:

E(πe
1, π

e
2) =

{
f1 = (X2D)1, f2 = (X2D)′1, b = |l2| if |l1| > |l2|,
f1 = (X2D)2, f2 = (X2D)′2, b = |l1| otherwise.

(17)

where(X2D)′ is symmetrical withX2D around the intersection point and on the line defined
by X2D andIP (as shown in figure 14(e)).

A.2. Definition of coplanarity

Let πs denote either a semi-edgeπse or a monoπm. Two πs are coplanar iff they are on the
same plane. When it comes to measuring coplanarity, two criteria need to be tested:
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Figure 20. Criteria for coplanarity of two planes. (a) According to the angular-difference
criterion of coplanarity, entities A and B will be measured as coplanar although they are on
different planes. In (b), P is the plane defined by entity A. According to the distance-based
coplanarity definition, entities B and C have the same measure of coplanarity. However, entity
C which is more distant to entity A should have a higher measure of coplanarity than entity B
although they have the same distance to plane P (see the text).

(i) Angular criterion: For twoπs to be coplanar, the angular difference between the
orientation of the planes that represent them should be less than a threshold. A situation
is illustrated in figure 20(a) where angular criterion holds but the planes are not coplanar.

(ii) Distance-based criterion: For twoπs to be coplanar, the distance between the center of
the firstπs and the plane defined by the otherπs should be less than a threshold. In
figure 20(b), B and C are at the same distance to the plane P which is the plane defined
by the planar patch A. However, C is more distant to the center of A than B, and in this
paper, we treat that C is more coplanar to A than B is to A. The reason for this can be
clarified with an example: Assume that A, B and C are all parallel, and that theplanar
and the Euclidean distances between A and B are bothD units, and between A and C are
respectivelyD andn × D. It is straightforward to see that although B and C have the
same planar distances to A, forn >> 1, C should have a higher coplanarity measure.

It is sufficient to combine these two criteria as follows:

cop(πs
1, π

s
2) = α(pπs

1 , pπs
2) < Tp AND

d(pπs
1 , πs

2)/d(π
s
1, π

s
2) < Td, (18)

wherepπs
is the plane associated toπs; α(p1,p2) is the angle between the orientations ofp1

andp2; and,d(., .) is the Euclidean distance between two entities.
In our analysis, we have empirically chosenTp andTd as 20 degrees and 0.5, respectively.

Again, like the parameters set in section 3.1.4, these values are determined by testing the
coplanarity measure over different samples.Tp is the limit for angular separation between
two planar patches. Bigger values would relax the coplanarity measure, and vice versa.Td

restricts the distances between the patches; in analogy toTp, Td can be used to relax the
coplanarity measure. As shown in figure 17 for a stricter coplanarity definition (withTp and
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Td set to 10 degrees and 0.2), different values for these thresholds would quantitatively but
not qualitatively change the results presented in section 5.
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[Kalkan et al., 2007]Kalkan, S., Ẅorgötter, F., and Kr̈uger, N. (2007). Statistical analysis of second-order
relations of 3d structures.Int. Conference on Computer Vision Theory and Applications (VISAPP).

[Kellman and Arterberry, 1998]Kellman, P. and Arterberry, M., editors (1998).The Cradle of Knowledge.
MIT-Press.

[Knill and Richards, 1996]Knill, D. C. and Richards, W., editors (1996).Perception as bayesian inference.
Cambridge: Cambridge University Press.

[Koenderink and Dorn, 1982]Koenderink, J. and Dorn, A. (1982). The shape of smooth objects and the way
contours end.Perception, 11:129—173.

[Krueger, 1998]Krueger, N. (1998). Collinearity and parallelism are statistically significant second order
relations of complex cell responses.Neural Processing Letters, 8(2):117–129.
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Abstract

In this paper, we present a set of perceptual relations, namely, co-colority, co-planarity, collinearity
and symmetry that are defined between multi-modal visual features that we call primitives.

1 Introduction

According to Marr’s paradigm [29], vision involves extraction of meaningful representations from input
images, starting at the pixel level and building up its interpretation more or less in the following order: local
filters, extraction of important features, the 21

2 -D sketch and the 3-D sketch.
There is psychophysical evidence and evidence from the statistical properties of natural images that the hu-
man visual system utilizes a set of visual-entity-combining processes, called perceptual organization in the
literature, for forming bigger, sparser and more complete interpretations of the scene (see, e.g., [18, 19, 35]).
Such processes include (i) extraction of the boundary of the objects in the image from the set of unconnected
edge pixels or features [3, 8, 10, 21, 27, 31, 39] utilizing Gestalt laws of grouping, and (ii) interpolation and
extrapolation of unconnected sparse 3D entities for forming more complete 3D surfaces (see, e.g., [13]) uti-
lizing the relations between the 3D entities. Gestalt principles include collinearity, proximity, common fate
and similarity whereas inference of 3D surfaces from a set of 3D entities include relations like coplanarity,
collinearity, co-colority etc. These are essentially second order and higher order relations of local features.
In [26], we have introduced a specific form of a local descriptor that we call a ’multi–modal primitive’
(see section 2) and which can be seen as a functional abstraction of a hypercolumn (see [24]). We distin-
guish between 2D primitives describing local image information and 3D primitives covering local 3D scene
information in a condensed symbolic way.
These primitives serve as a basis for an early cognitive vision system [23, 26, 33] in which operations and
relations on these primitives realizing perceptual grouping principles are used in different contexts (see [26]
for applications). We have utilized these relations for different problems including stereo [34], RBM [32],
estimation of initial grasping reflexes from stereo [5], estimation of depth at homogeneous image structures
[16], and analysis of second-order relations between 3D features [17].
In this paper, we present the set of 2D and 3D relations defined upon the primitives. These relations include
collinearity, cocolority, coplanarity and symmetry. Of these relations, collinearity, cocolority and symmetry
are defined for 2D as well as 3D primitives whereas by definition, coplanarity is meaningful only for 3D
primitives. Table 1 summarizes the relations and on which dimension they are defined.

Relation 2D 3D
co-planarity ×

√

co-colority
√ √

collinearity
√ √

symmetry
√ √

Table 1: The relations and in which dimension they are defined.

This paper does not focus on any specific application domain but provides a technically detailed definition
of these relations that are usually not described in such detail in publications making use of them.
The paper is organized as follows: In section 2, we briefly introduce our visual features, namely primitives.
In section 3, we describe our definitions of perceptual relations between the visual primitives. In section 5,
we conclude the paper.

1
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2 Primitives

Numerous feature detectors exist in the literature (see [30] for a review). Each feature based approach
can be divided into an interest point detector (e.g. [14, 4]) and a descriptor describing a local patch of
the image at this location, that can be based on histograms (e.g. [6, 30]), spatial frequency [20], local
derivatives [15, 11, 1] steerable filters [12], or invariant moments ([28]). In [30] these different descriptors
have been compared, showing a best performance for SIFT-like descriptors.
The primitives we will be using in this work are local, multi–modal edge descriptors that were introduced
in [25]. In contrast to the above mentioned features these primitives focus on giving a semantically and
geometrically meaningful description of the local image patch. The importance of such a semantic ground-
ing of features for a general purpose vision front–end, and the relevance of edge–like structures for this
purposes were discussed in [9].
The primitives are extracted sparsely at locations in the image that are the most likely to contain edges.
This likelihood is computed using the intrinsic dimensionality measure proposed in [22]. The sparseness
is assured using a classical winner take all operation, insuring that the generative patches of the primitives
do not overlap (for details, see [26]). Each of the primitive encodes the image information contained by a
local image patch. Multi–modal information is gathered from this image patch, including the position m
of the centre of the patch, the orientation θ of the edge, the phase ω of the signal at this point, the colour c
sampled over the image patch on both sides of the edge and the local optical flow f . Consequently a local
image patch is described by the following multi–modal vector:

π = (m, θ, ω, c,f , ρ)T , (1)

that we will name 2D primitive in the following.
Note that these primitives are of lower dimensionality than, e.g., SIFT (10 vs. 128) and therefore suffer
of a lesser distinctiveness. Nonetheless, as shown in [34] that they are distinctive enough for a reliable
stereo matching if the epipolar geometry of the cameras is known. Furthermore, their semantic in terms of
geometric and appearance based information allow for a good description of the scene content. It has been
previously argued in [9] that edge pixels contain all important information in an image. As a consequence,
the ensemble of all primitives extracted from an image describe the shapes present in this image.
Advantageously, the rich information carried by the 2D–primitives can be reconstructed in 3D, providing a
more complete scene representation. Having geometrical meaning for the primitive allows to describe the
relation between proximate primitives in terms of perceptual grouping.
In a stereo scenario 3D primitives can be computed from the correspondences of 2D primitives (see figure
1 and [34]):

Π = (M ,Θ,Ω,C)T , (2)

such that we have a projection relation:
P : Π → π . (3)

3 Relations

In this section, we present collinearity, cocolority, coplanarity and symmetry relations that are defined on
our visual features.

3.1 Collinearity in 2D and 3D

As the primitives are local contour descriptors, scene contours are expected to be represented by strings of
primitives that are locally close to collinear. In the following, we will explain methods for grouping 2D and
3D primitives into contours.

2
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Primitive :

1. Orientation ( )q

2. Phase ( )w

3. Colour ( )c

4. Optical flow ( )f

1

4

33

2

a)

b)

c)

d)

e)

Figure 1: Illustration of the primitive extraction process from a video sequence. The 2D–primitives ex-
tracted from the input image (a) (see section 2), and finally the 3D–primitives reconstructed from the
stereo–matches as described as described in [34]. (a) An example input image. (b) A graphic descrip-
tion of the 2D–primitives. (c) A magnification of the image representation. (d) Perceptual grouping of the
primitives as described in [34]. (e) The reconstructed 3D entities. Note that the structure reconstructed is
quite far from the cameras, leading to a certain imprecision in the reconstruction of the 3D–primitives. A
simple scheme addressing this problem is described in [34].
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Figure 2: Illustration of the values used for the collinearity computation. If we consider two primitives πi

and πj , then the vector between the centres of these two primitives is written vij , and the orientations of
the two primitives are designated by the vectors ti and tj , respectively. The angle formed by vij and ti is
written αi, and between vij and tj is written αj . ρ is the radius of the image patch used to generate the
primitive.

3.1.1 Collinearity in 2D

In the following, c(li,j) refers to the likelihood for two primitives πi and πj to be linked: i.e. grouped to
describe the same contour.
Position and orientation of primitives are intrinsically related. As primitives represent local edge estimators,
their positions are points along the edge, and their orientation can be seen as a tangent at such a point. The
estimated likelihood of the contour described by those tangents is based upon the assumption that simpler
curves are more likely to describe the scene structures, and highly jagged contours are more likely to be
manifestations of erroneous and noisy data.
Therefore, for a pair of primitives πi and πj in image I , we can formulate the likelihood for these primitives
to describe the same contour as a combination of three basic constraints on their relative position and
orientation — see [34].

Proximity (cp[li,j ]): A contour is more likely if it is described by a dense population of primitives. Large
holes in the primitive description of the contour is an indication that there are two contours which are
collinear yet different. The proximity constraint is defined by the following equation:

cp[li,j ] = 1− e
−max

„
1−

||vi,j||
ρτ

,0

«
, (4)

where ρ stands for the size of the receptive field of the primitives in pixels; ρτ is the size of the neighbour-
hood considered in pixels; and, ‖vi,j‖ is the distance in pixels separating the centres of the two primitives.

Collinearity (cco[li,j ]): A contour is more likely to be linear, or to form a shallow curve rather than a sharp
one. A sharp curve might be an indication of two intersecting or occluding contours.

cco[li,j ] = 1−
∣∣∣∣sin(

|αi|+ |αj |
2

)∣∣∣∣ , (5)

where αi and αj are the angles between the line joining the two primitives centres and the orientation of,
respectively, πi and πj .

Co–circularity (cci[li,j ]): A contour is more likely to have a continuous, or smoothly changing curvature,
rather than a varying one. An unstable curvature is an indicator of a noisy, erroneous or under–sampled
contour, all of which are unreliable.

cci[li,j ] = 1−
∣∣∣∣sin(

αi + αj

2

)∣∣∣∣ , (6)
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Geometric Constraint (Gi,j): The combination of those three criteria provided above forms the follow-
ing geometric affinity measure:

Gi,j = 3

√
ce[li,j ] · cco[li,j ] · cci[li,j ], (7)

where Gi,j is the geometric affinity between two primitives πi and πj . This affinity represents the likelihood
that two primitives πi and πi are part of an actual contour of the scene.

Multi–modal Constraint (Mi,j): The geometric constraint offers a suitable estimation of the likelihood
of the curve described by the pair of primitives. Other modalities of the primitives allow inferring more
about the qualities of the physical contour they represent. The colour, phase and optical flow of the primi-
tives further define the properties of the contour, and thus consistency constraints can also be enforced over
those modalities. Effectively, the less difference there is between the modalities of two primitives, the more
likely that they are expressions of the same contour. In [7], it is already proposed that the intensity can be
used as a cue for perceptual grouping; our definition goes beyond this proposal by using a combination of
the phase, colour and optical flow modalities of the primitives to decide if they describe the same contour:

Mi,j = wωcω[li,j ] + wccc[li,j ] + wfcf [li,j ], (8)

where cω is the phase criterion, cc the colour criterion and cf the optical flow criterion. Each of the three
wω, wc and wf is the relative scaling for each modality, with wω + wc + wf = 1.

Primitive Affinity (Ai,j): The overall affinity between all primitives in an image is formalised as a matrix
A, where Ai,j holds the affinity between the primitives πi and πj . We define this affinity from equations 7
and 8, such that (1) two primitives complying poorly with the good continuation rule have an affinity close
to zero; and (2) two primitives complying with the good continuation rule yet strongly dissimilar will have
only an average affinity. The affinity is formalised as follows:

c(li,j) = Ai,j =
√

G (αGi,j + (1− α)Mi,j), (9)

where α is the weighting of geometric and multi–modal (i.e. phase, colour and optical flow) information
in the affinity. A setting of α = 1 implies that only geometric information ( proximity, collinearity and
co-circularity) is used, while α = 0 means that geometric and multi–modal information are evenly mixed.

3.1.2 Collinearity in 3D

Collinearity in 3D is more difficult to define. Due to the inaccuracy in stereo–reconstruction of 3D position
and orientation, it is impossible to apply strong alignment constraints such as the ones we applied in the 2D
case. Consequently we will define 3D collinearity as follows:

Definition 1 Two 3D–primitives Πi and Πj are said collinear if the 2D–primitives πx
i and πx

j they project
onto the camera plane x (defined by a projection relation Px : Πk → πk) are all collinear (according to
the definition of 2D–primitive collinearity presented above).

and therefore in the standard case where we have two stereo cameras labelled l and r we have the following
relation:

c(Li,j) = c(lli,j) · c(lri,j). (10)

5
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πjπi πk

Figure 3: Co–colority of three 2D primitives πi, πj and πk. In this case, πi and πj are cocolor, so are πi

and πk; however, πj and πk are not cocolor.

3.2 Cocolority in 2D and 3D

Two spatial primitives Πi and Πj are co–color iff their parts that face each other have the same color. In
the same way as collinearity, co–colority of two spatial primitives Πi and Πj is computed using their 2D
projections PΠi = πi and πj . We define the co–colority of two 2D primitives πi and πj as:

coc(πi, πj) = 1− dc(ci, cj),

where ci and cj are the RGB representation of the colors of the parts of the primitives πi and πj that face
each other; and, dc(ci, cj) is Euclidean distance between RGB values of the colors ci and cj . In Fig. 3, a
pair of co–color and not co–color primitives are shown.
Euclidean color distance dc is a simple one compared to color distance metrics developed by different in-
stitutes like International Commission on Illumination (CIE). Such metrics are developed to match our per-
ception of colour and are computationally expensive (see, e.g., [38]). For our purposes, Euclidean distance
between RGB values is sufficient and can be replaced by a more complicated distance metric, if desired.
3D co-colority is defined as follows:

Definition 2 Two 3D–primitives Πi and Πj are said cocolor if the 2D–primitives πx
i and πx

j they project
onto the camera plane x (defined by a projection relation Px : Πk → πk) are co-color (according to the
definition of 2D–primitive cocolority presented above).

3.3 Coplanarity

According to [37],

a set of points in space is coplanar if the points all lie in a geometric plane. For example, three
points are always coplanar; but four points in space are usually not coplanar.

Although the definitions are more or less the same, there are different ways to check the coplanarity of a
set of points [36, 37]. For a set of n points x1...xn where xi = (xi, yi, zi), the following methods can be
adopted:

• For n = 4, x1...xn are coplanar

– iff the volume of the tetrahedron defined by them is 0 [36], i.e.,∣∣∣∣∣∣∣∣
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

∣∣∣∣∣∣∣∣ = 0. (11)

– iff the pair of lines determined by the four points are not skew [36]:

(x3 − x1).[(x2 − x1)× (x4 − x3)] = 0. (12)

6
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– iff x4 is on the plane defined by x1,x2,x3:

d(x4, P (x1,x2,x3)) = 0, (13)

where P (x1,x2,x3) is the plane defined by P (x1,x2,x3), and d(x,p) is the distance between
point x and plane p.

• For n > 4, x1...xn are coplanar iff point-plane distances of x4..xn to the plane defined by (x1,x2,x3)
are all zero:

n∑
i=4

d(xi, P (x1,x2,x3)) = 0. (14)

3.3.1 Coplanarity of bounded planes

A bounded plane pb is part of the plane p with a certain size s and position x. In other words, pb is
equivalent to (n,x, s) where n,x, s are respectively the normal (i.e., orientation), position (i.e., center) and
the size of the bounded plane.
As suggested in [17], two bounded planes pb

1,p
b
2 are coplanar if:

(α(n1,n2) < Tα) ∧ (
d(x1,pb

2)
d(x1, x2)

< Td), (15)

where α(n1,n2) is the angle between the two orientations vectors n1 and n1, and Tα and Td are the thresh-
olds.

3.3.2 Coplanarity of 3D primitives

Two spatial primitives Πi and Πj are co–planar iff their orientation vectors lie on the same plane, i.e.:

cop(Πi,Πj) = 1− |projtj×vij
(ti × vij)|, (16)

where vij is defined as the vector (M i −M j); ti and tj denote the vectors defined by the 3D orientations
Θi and Θj , respectively; and proju(a) is defined as:

proju(a) =
a · u
‖ u ‖2

u. (17)

The co–planarity relation is illustrated in Fig. 4.

3.4 Symmetry in 2D and 3D

Two primitives are symmetric if they are located on two contours which are reflections of each other (see
figure 5(a)). This reflective symmetry between two primitives can be measured by utilizing the angles
between the orientations of the primitives and the line that joins the centers of the primitives.
Let vij denote the line joining the centers of the primitives, πi and πj , and also φij and φji be the angles
between vij and the lines defined by the orientations of πi and πj , respectively (see figure 5). Then, two
2D primitives πi and πj can be considered symmetric, if φij = φji with a symmetry axis aij defined as
follows:

aij =
{

L(cij ; θi) if θi = θj ,
L(cij ;αij), otherwise,

(18)

7
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PΠi

Πj

nj

vij

ni

tj

ti

Figure 4: Co–planarity of two 3D primitives Πi and Πj . ti and tj denote the vectors defined by the 3D
orientations Θi and Θj , respectively.

where L(x; θ) is a line that goes through a point x with orientation θ; int(lk, lm) is the intersection point
of two lines denoted by lk and lm; cij is defined as the mid-point of vij (i.e., (mi + mj)/2); and, αij is the
angle of the line that joins the points cij and int(L(mi; θi), L(mj ; θj)).
The symmetry axis aij is undefined if the primitive orientations θi and θj , and vij are all parallel, which is
the case when both primitives are located on the same linear segment of a contour. This is the case for πj

and πk in figure 5(b) and 5(c). If the symmetry axis aij is undefined, a primitive pair should not be regarded
as symmetric, but collinear.
Figure 5 illustrates a few symmetric and non-symmetric primitives. In figure 5(b) and 5(c), as the primitives
πj and πk are on the same contour, aij is parallel with the primitive orientations θj , θk and vjk.
Taking collinearity into account, symmetry between two primitives πi and πj is defined as follows:

sym(πi, πj) =
{

0 if cco[li,j ] > Tc,
1− |sin(φij − φji)| otherwise,

(19)

where cco[li,j ] is the collinearity relation and Tc is a threshold, determining if πi and πj are collinear.
Like collinearity and co–colority, the symmetry of two 3D primitives Πi and Πj is computed using their
2D projections πi and πj :

Definition 3 Two 3D–primitives Πi and Πj are said to be symmetric if the 2D–primitives πx
i and πx

j they
project onto the camera plane x (defined by a projection relation Px : Πk → πk) are symmetric (according
to the definition of 2D–primitive symmetry presented above).

4 Results

In figure 6, the coplanarity, cocolority and collinearity relations are shown for two different example scenes
shown in figure 6(a) and (b). The results are from our 3D display tool called Wanderer, and for computa-
tional reasons, 3D primitives are shown in squares. The relations are displayed only for a primitive which
is selected with the mouse as showing relations between all primitives disables visibility.
From the figure we see that coplanarity is a more common relation than cocolority or collinearity. This
suggests that coplanarity alone is not directly usable for analysis or applications in 3D, and it needs to be
accompanied with other relations as proposed and utilized in [2, 16].
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5 Conclusion

In this paper, we presented cocolority, coplanarity, collinearity and symmetry relations defined on multi-
modal visual features, called primitives.
Such relations have been utilized in different perceptual organization problems as well as analysis of how
the natural scenes are structured (see, e.g., ([3, 8, 10, 13, 16, 17, 21, 27, 31, 34, 39]), and the importance
of such relations, as well as their psychophysical and biological plausibility have been acknowledged in the
literature (see, e.g., [18, 19, 35]).
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Figure 5: Illustration of the definition of symmetry. ti, tj and tk denote the vectors defined by the orienta-
tions θi, θj and θk, respectively. Primitives πi and πj are symmetric in (a) and (b), but not in (c). πi and πk

are symmetric in (c), but not in (a) or (b).
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Figure 6: The coplanarity, cocolority and collinearity relations on two different examples shown in (a) and
(b). The results are from our 3D display tool called Wanderer, and for the sake of speed, 3D primitives are
shown in squares. The relations are shown only for a selected primitive as showing relations between all
primitives disables visibility.
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Publication History

135



Abstract

Depth at homogeneous or weakly-textured image areas is difficult to obtain because such image
areas suffer the well-known correspondence problem. In this paper, we propose a voting model that
predicts the depth at such image areas from the depth of bounding edge-like structures. The depth at
edge-like structures is computed using a feature-based stereo algorithm, and is used to vote for the depth
of homogeneous image areas. We show the results of our ongoing work on different scenarios.

1 Introduction

Extraction of 3D structure from 2D images is realized by utilizing a set of inverse problems that include
structure from motion, stereo vision, shape from shading, linear perspective, texture gradients and occlusion
[3]. These cues can be classified as pictorial, or monocular, (such as shading, utilization of texture gradients
or linear perspective) and multi-view (like stereo and structure from motion). Depth cues which make use of
multiple views require correspondences between different 2D views of the scene. In contrast, pictorial cues
use statistical and geometrical relations in one image to make statements about the underlying 3D structure.
Many surfaces have only weak texture or no texture at all, and as a consequence, thecorrespondence prob-
lem is very hard or not at all resolvable for these surfaces. Nevertheless, humans are able to reconstruct
3D information for these surfaces, too. Existing psychophysical experiments (see,e.g., [2, 4]) and compu-
tational theories (see,e.g., [1, 6, 26]) suggest that in the human visual system,an interpolation processis
realized that starting with the local analysis of edges, corners and textures, computes depth also in areas
where correspondences cannot easily be found.
In this paper, we are interested in prediction of depth at homogeneous image patches (calledmonos in this
paper) from the depth of the edges in the scene using a voting model. We start by creating a representation
of the input stereo images in terms of local image patches corresponding to edge-like structures and monos
(as introduced in [15] and section 2, and described in detail in [16]). The depth at edge-like patches is
extracted using feature-based stereo computation between the two images (using the method introduced in
[22]). The depth that is extracted at the bounding edge-like patches of a mono using stereo votes for its
depth.
We would like to distinguishdepth predictionfrom surface interpolationbecause surface interpolation
assumes that there is already a dense depth map of the scene available in order to be able to estimate the
3D orientation at points (see,e.g., [6, 7, 8, 18, 19, 25, 26]) whereas our understanding of depth prediction
makes use of only 3D line-orientations at edge-segments which are computed using a feature-based stereo
proposed in [22].
A typical scenario that our model is designed for is shown in figure 1 where an input stereo pair and the
stereo data (computed using [22]) are displayed. We see that computed stereo information has strong outliers
which prohibit asurface interpolationmethod as it is not possible to differentiate between the outliers and
the reliable stereo information. Moreover, the stereo information that should be reliable at the edges of
the road turn out not to share a common surface nor the same 3D line (see figure 1(c)). Applying a surface
interpolation method on such input data is expected to lead to a wrong road surface prediction. In this paper,
we will show that our depth prediction method is able to cope with such strong outliers.

1.1 Related studies

It is fair to count the early works of Grimson [6] as the pioneers of surface interpolation. In [6], Grimson
proposed fitting square Laplacian functionals to surface orientations at existing 3D points utilizing asurface
consistency constraintcalled ’no news is good news’. The constraint argues that if two image points do not
have a contrast difference in-between, then they can be assumed to be on the same 3D surface (see [11] for
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a quantification of this assumption). This work is extended in [7] with use of shading information. [6, 7]
assume that surface information is available, and the input 3D points are dense enough for second order
differentiation.
In [1], surface orientation at homogeneous image areas is recovered byinterpreting line drawings. Lines
are classified as extremal or discontinuity by making use of the junction labels and global relations like
symmetry and parallellism. They assume that (1) extremal points (the boundaries of the objects) in an
image correspond to surface orientations which are normal to the image curve and the line of sight, and that
(2) discontinuities (lines other than extremal points) lead to surface orientations which are normal to space
curve. The underlying assumptions of [1] are that (1) a clean contour of the scene is provided, and that (2)
the object is separated from the background. Moreover, the results provided in [11] suggest that it may not
be a good idea to assume that edges correspond to only certain types of surface orientations. [21, 24, 27, 28]
are similar to [1] as far as our paper is concerned.
In [8], 3D points with surface orientation are interpolated using a perceptual constraint calledco-surfacity
which produces a 3D association field (which is called Diabolo field by the authors) similar to the associ-
ation field used in 2D perceptual contour grouping studies. If the points do not have 3D orientation, they
estimate the 3D orientation first and then apply the surface interpolation step. In [18, 19], it is argued that
stereo matching and surface interpolation should not be sequential but rather simultaneous. For this, they
employ the following steps: (1) Normalized-cross correlation and edge-based stereo are computed. (2) The
disparities are combined and disparities corresponding to inliers, surfaces and surface discontinuities are
marked using tensor voting. (3) Surfaces are extracted using marching cubes approach. At this stage, sur-
faces are over the boundaries. (4) At the last step, over-boundary surfaces are trimmed. They assume sphere
as their surface model when interpolating surface orientations.
Our method is similar to shape from silhouette methods which try to estimate the 3D information from the
occluding edges of a single object (see,e.g., [13, 20]). As put forward in [20], these methods are limitted to
spherical objects, and the underlying principles are valid only for occluding edges.
In [25, 26], stereo is computed at different scales, and instead of collapsing the results of these different
scales into a single layer of disparity estimation and then applying surface interpolation, surface interpola-
tion is applied separately for each scale and the results are combined.
Our work is different from the above mentioned worksin that:

• Our approach does not assume that the input stereo points are dense enough to compute their 3D
orientation (this is why the authors of this paper prefer to distinguish between depth prediction and
surface interpolation). Instead, our method relies on the 3D line-orientations of the edge segments

(a) (b) (c)

Figure 1: An input stereo pair ((a) and (b)) and how a feature-based stereo algorithm (taken from [22]) looks
like (c).
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which are extracted using a feature-based stereo algorithm (proposed in [22]).

• We employ a voting method like [18, 19] but is different, allowing long-range interactions in empty
image areas, in order to predictboththe depth and the surface orientation.

The paper is organized as follows: In section 2, we introduce how the images are represented in terms of
local image patches. Section 3 describes the 2D and 3D relations between the local image patches that are
utilized in the depth prediction process. Section 4 gives the outline of how the depth prediction is performed.
In section 5, the results are presented and discussed. Finally, in section 6, the paper is concluded.

2 Visual Features

The visual features we utilize (called primitives in the rest of the paper) are local, multi-modal feature
descriptors that were intoduced in [15]. They are semantically and geometrically meaningful descriptions
of local patches, motivated by the hyper-columnar structures in V1 ([9]).
An edge-like primitive can be formulated as:

πe = (x, θ, ω, (cl, cm, cr), f), (1)

wherex is the image position of the primitive;θ is the 2D orientation;ω represents the contrast transition;
(cl, cm, cr) is the representation of the color, corresponding to the left (cl), the middle (cm) and the right
side (cr) of the primitive; and,f is the optical flow extracted using Nagel-Enkelmann optic flow algorithm.
As the underlying structure of an homogeneous image patch is different from that of an edge-like patch, a
different representation is needed for homogeneous image structures (calledmonos in this paper):

πm = (x, c), (2)

wherex is the image position, andc is the color of the mono.
See [17] for more information about these modalities and their extraction. Figure 2 shows extracted primi-
tives for an example scene.
πe is a 2D feature which can be used to find correspondences in a stereo framework to create 3D primitives
(as introduced in [14, 23]) with the following formulation:

Πe = (X,Θ,Ω, (cl, cm, cr)), (3)

whereX is the 3D position;Θ is the 3D orientation;Ω is the phase (i.e., contrast transition); and,(cl, cm, cr)
is the representation of the color, corresponding to the left (cl), the middle (cm) and the right side (cr) of
the 3D primitive.
In this paper, we estimate the 3D representationΠm of monos which stereo fails to compute:

Πm = (X,n, c), (4)

whereX andc are as in equation 2, andn is the orientation (i.e., normal) of the plane that locally represents
the mono.

3 Relations between Primitives

Sparse and symbolic nature of primitives allows the following relations to be defined on them. For more
information about relations of primitives, see [10].
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(a) Input image.

(b) Extracted primitives.

Figure 2: Extracted primitives (b) for the example image in (a).
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Primitive :

1. Orientation ( )q

2. Phase ( )w

3. Colour ( )c

4. Optical flow ( )f

1

4

33

2

a)

b)

c)

d)

e)

Figure 3: Illustration of the primitive extraction process from a video sequence. The 2D–primitives ex-
tracted from the input image (a) (see section 2), and finally the 3D–primitives reconstructed from the
stereo–matches as described as described in [23].(a) An example input image.(b) A graphic descrip-
tion of the 2D–primitives.(c) A magnification of the image representation.(d) Perceptual grouping of the
primitives as described in [23].(e) The reconstructed 3D entities. Note that the structure reconstructed is
quite far from the cameras, leading to a certain imprecision in the reconstruction of the 3D–primitives. A
simple scheme addressing this problem is described in [23].
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Figure 4: Co–planarity of two 3D primitivesΠe
i andΠe

j .

3.1 Co–planarity

Two 3D edge primitivesΠe
i andΠe

j are co–planar iff their orientation vectors lie on the same plane, i.e.:

cop(Πe
i ,Π

e
j) = 1− |proj tj×vij

(ti × vij)|, (5)

wherevij is defined as the vector(Xi −Xj); ti andtj denote the vectors defined by the 3D orientationsΘi

andΘj , respectively; and,proj u(a) is defined as:

proj u(a) =
a · u
‖ u ‖2

u. (6)

The co–planarity relation is illustrated in Fig. 4.

3.2 Linear dependence

Two 3D primitivesΠe
i andΠe

j are linearly dependent iff thethree lines which are defined by (1) the 3D
orientation ofΠe

i , (2) the 3D orientation ofΠe
j and (3)vij are identical. Due to uncertainty in the 3D

reconstruction process, in this work, the linear dependence of two spatial primitivesΠe
i andΠe

j is computed
using their 2D projectionsπe

i andπe
j . We define the linear dependence of two 2D primitivesπe

i andπe
j as:

lin(πe
i , π

e
j) = |projvij

ti| > Th ∧ |projvij
tj | > Th, (7)

whereti andtj are the vectors defined by the orientationsθi andθj , respectively; and,Th is a threshold.

3.3 Co–colority

Two 3D primitivesΠe
i andΠe

j are co–color iff their parts that face each other have the same color. In the
same way as linear dependence, co–colority of two spatial primitivesΠe

i andΠe
j is computed using their 2D

projectionsπe
i andπe

j . We define the co–colority of two 2D primitivesπe
i andπe

j as:

coc(πe
i , π

e
j) = 1− dc(ci, cj), (8)

whereci andcj are the RGB representation of the colors of the parts of the primitivesπe
i andπe

j that face
each other; and,dc(ci, cj) is Euclidean distance between RGB values of the colorsci andcj .
Co-colority between an edge primitiveπe and and a mono primitiveπm, and between two monos can be
defined similarly (not shown here).
In Fig. 6, a pair of co–color and not co–color primitives are shown.
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πi

πkπj

tj

ti

tk

vij
vik

Figure 5: Linear dependence of threeπe
i, πe

j andπe
k. In this example,πe

i is linearly dependent withπe
j

whereasπe
k is linearly independent of other primitives.

πjπi πk

Figure 6: Co–colority of three 2D primitivesπe
i , π

e
j andπk. In this example,πe

i andπe
j are cocolor, so are

πe
i andπe

k; however,πe
j andπe

k are not cocolor.

4 Formulation of the model

For the prediction of the depth at monos, we developed a voting model. In a voting model, there are a set of
voters that state theiropinionabout a certain evente. A voting model combines these votes in a reasonable
way to make a decision about the evente.
In the depth prediction problem, the evente to be voted about is the depth and the 3D orientation of a mono
πm, and the voters are the edge primitives{πe

i} (for i = 1, ..., NE) that bound the mono. In this paper, we
are interested in the predictions of pairs ofπe

i s, which are denoted byPj for j = 1, ..., NP . While forming a
pairPj from two edgesπe

i andπe
k from the set of the bounding edges of a monoπm, we have the following

restrictions:

1. πe
i andπe

k should share the same color with the monoπm (i.e., the following relations should hold:
coc(πe

i , π
e
k) andcoc(πe

i , π
m)).

2. The 3D primitivesΠe
i andΠe

k of πe
i andπe

k should be on the same plane (i.e., cop(Πe
i ,Π

e
k)).

3. πe
i andπe

k should not be linearly dependent so that they can define only one plane (i.e.,¬ lin(πe
i , π

e
k)).

In figure 7, such restrictions are illustrated for an example mono and a set of edge primitives that bound it.
The primitivesπe

j andπe
m are on the same line (i.e., they are linearly dependent), and they define infinitely

many planes. As for primitivesπe
l andπe

k, they cannot define a plane as they are not on the same plane, nor
do they share the same color.
The votevi by a pairPj can be parametrized by:

vi = (X,n), (9)

where~n is the normal of the monoπm, andz is its depth relative to the plane defined byPi.
Eachvi has an associated reliability or probabilityri. They denote how likely the vote is based on the
believes of pairPi. It can be modeled as a function of the distance of the monoπm to the intersection point
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Figure 7: A set of primitives for illustrating why the relations coplanarity, cocolority and linear dependence
are required as restrictions for forming pairs from edges.

IP :
ri = f(d(Πm, Pi)). (10)

ri can be weighted by the confidences of the elements of the pairPi that reflect their quality.

4.1 Bounding edges of a mono

b)

a)

Search Area Without Grouping With Grouping Input Image

Figure 8: Finding bounding edge primitives with and without grouping information for two different monos
which are marked in black in the first column. Using grouping information produces a more complete
boundary finding as shown in (a). However, using grouping may include unwanted edge primitives in the
boundary as shown in (b).

Finding the bounding edges of a monoπm requires making searches in a set of directionsdi, i = 1...Nd for
the edge primitives. In each directiondi, starting from a minimum distanceRmin, the search is performed
upto a distance ofRmax in discrete stepssj , j = 1...Ns. If an edge primitiveπe is found in directiondi in
the neighborhoodΩ of a stepsj , πe is added to the list of bounding edges and the search continues with the
next direction.
The above mentioned method for finding the bounding edge primitives will lead to an incomplete and sparse
boundary detection (see figure 8) because the search is performed only in a set of discrete directions. This
can be improved by making use of the contour grouping information; when an edge primitiveπe is found
in a directiondi at stepsj , if πe is part of a groupG, then all the edge primitives inG can be added to the
list of bounding edges (see [23] for information about the grouping method we employ in this paper).
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Figure 9: Illustration of how the vote of a pair of edge primitives is computed. The 3D primitivesΠe
i and
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j corresponding to the 2D primitivesπe

i andπe
j define the planep. The intersection ofp with the rayl that

goes through the 2D monoπm and the camera center C then determines the position of the estimated 3D
monoΠm. The 3D orientation ofΠm is set to be the orientation of the planep.

Grouping information can lead to more complete and dense boundary finding as shown in figure 8(a);
however, for certain objects, it may lead to worse results due to low contrast edges (see figure 8(b)).

4.2 The vote of a pair of edge primitives on a monoπm

A pair Pi of two edge primitivesπe
j andπe

k with two corresponding 3D edge primitivesΠe
j andΠe

k, which
are co-planar, co-color and linearlyindependent, defines a planep with 3D normaln and positionX.
The votevl of Πe

j andΠe
k is computed by the intersection of the planep with the rayl that goes through the

mono,πm, and the focus of the camera (see figure 9). The rayl is computed using the following formula
([5], pg41):

Xa = P−1(−p̃ + λx̃), (11)

wherex̃ is the homogeneous position ofπm; P andp̃ are respectively the 3x3 and the 3x1 sub-parts of the
3x4 projection matrixPm so thatPm = [P p̃]; and,λ is an arbitrary number. By using two different values
for λ, two different points on rayl are extracted which then are used to compute the rayl.
Because the rayl is unique for a monoπm, all the votes processed for the monoπm will be on rayl. This
property can be exploited for clustering the votes as discussed in section 4.3

4.3 Combining the votes

The votes can be integrated using different ways to estimate the 3D representationΠm of a 2D monoπm:

• Weighted averaging:

Πm = C

NP∑
i=1

vi ri, (12)

whereC is a normalization constant.

• Clustering:
Weighted averaging is prone to outliers which can be overcome by utilizing the set of clusters in the
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votes. Let us denote the clusters byci for i = 1, ...Nc. Then, one integration scheme would be to take
the cluster that has the highest average reliability:

Πm = arg maxci

1
#ci

∑
vj ∈ ci

rj . (13)

whereri is the reliability (i.e., confidence) associated to the votevi.

An alternative can use the most crowded cluster:

Πm = arg maxci #ci. (14)

It is also possible to combine the number of votes and the average reliability of a cluster for making
a decision.

As mentioned above, weighted averaging is prone to outliers but is fast. Clustering the votes can filter
outliers whereas is slow. Moreover, clustering is an ill-posed problem, and most of the time, it is not trivial
to determine the number of clusters from the data points that will be clustered.
In this paper, we implemented (1) a histogram-based clustering where the number of bins is fixed, and the
best cluster is considered to be the bin with the most number of elements, and (2) a clustering algorithm
where the number of clusters is determined automatically by making use of a cluster-regularity measure and
maximizing this measure iteratively.
(1) is a simple but fast approach whereas (2) is considerably slower due to the iterative-clustering step.
Suprisingly, our investigations showed that (1) and (2) produce almost identical results (the comparative
results are not provided in this paper). For this reason, we have adopted (1) as the clustering method for the
rest of the paper.

4.4 Combining the predictions using area information

3D surfaces project as areas into 2D images. Although one surface may project as many areas in the 2D
image, it can be claimed that the image points in an image area are part of the same 3D surface[SK: This
assumption does not always hold. I need to elaborate.].
Figure 10 shows the predictions of a surface. Due to strong outliers in the stereo computation, depth pre-
dictions are scattered around the surface that they are supposed to represent. We show that it is possible to
segment the 2D image into areas based on intensity similarity and combine the predictions in areas to get a
cleaner and more complete surface prediction.
We segment an input imageI into areasAi, i = 1, .., NA using co-colority (see section 3) between primi-
tives utilizing a simple region-growing method; the areas are grown until the image boundary or an edge-like
primitive is hit. Figure 11 shows the segmentation of one of the images from figure 1.
In this paper, we assume that eachAi has a corresponding surfaceSi defined as follows:

Si(x, y, z) = ax2 + by2 + cz2 + dxy + eyz + fxz + gx + hy + iz = 1. (15)

Such a surface model allows a wide range of surfaces to be represented, including spherical, ellipsoid,
quadratic, hyperbolic, conic, cylinderic and planar surfaces.
Si is estimated from the predictions inAi by solving for the coefficients using a least-squares method. As
there are nine coefficients, such a method requires at least nine predictions to be available in areaAi. For
the predictions shown in figure 10, the following surface is estimated which is shown in figure 12 using a
sparse sampling (only non-zero coefficients are shown):

S0 = 1.5× 10−5y2 + 5× 10−6yz − 1.9× 10−4x + 8× 10−3y + 1.2× 103z = 1. (16)
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Figure 10: The predictions on the surface of the road for the input images shown in figure 1 (predictions
are marked with red boundaries). The predictions are scattered around the plane of the road, and there are
wrong predictions due to strong outliers in the computed stereo.

Figure 11: Segmentation of one of the input images given in 1 into areas using region-growing based on
primitives.

Figure 12: The surface given in equation 16 which is extracted from the predictions shown in figure 10.
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Figure 13: The predictions from 10 that are corrected using the extracted surfaceS0 shown in equation 16
and figure 12.

S0 in equation 16 is mainly a planar surface with small quadratic coefficients caused by outliers.
Having an estimatedSi for an areaAi, it is possible tocorrect the mono predictions using the estimated
surfaceSi: Let Xn be the intersection of the surfaceSi with the ray that goes throughπm and the camera,
andnn be the surface normal at this point (defined bynn = (δSi/δx, δSi/δy, δSi/δz) ). Xn andnn are
respectively the corrected position and the orientation of monoΠm.
Corrected 3D monos for the example scene is shown in figure 13. Comparison with the initial predictions
which are shown in figure 10 concludes that (1) outliers arecorrectedwith the extracted surface represen-
tation, and (2) orientations and positions are qualitatively better.

5 Results

The test cases include kitchen scenarios and road scenarios which are intended for PACO+ and Drivsco
projects, respectively. The results of our model is shown for a few examples in figures 14, 15, 16, 17 and
18.
The results show that inspite of limited 3D information from feature-based stereo which may contain strong
outliers in some of the scenes (as shown in figure 1), our result is able to predict the surfaces.

6 Conclusion

In this paper, we introduced a voting model that estimates the depth at homogeneous or weakly-textured
image patches (called monos) from the depth of the bounding edge-like structures. The depth at edge-like
structures is computed using a feature-based stereo algorithm [22], and is used to vote for the depth of a
mono, which otherwise is not possible to compute easily due to the correspondence problem.
The method presented in this paper is an ongoing work. In the future, the reliability of each vote will
be replaced by the statistics collected from chromatic range data (see [12]). Moreover, comprehensive
comparison as well as possible combination with dense stereo methods are going to be investigated.
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(a) (b)

Figure 14: Experiment results on an artificialkitchenscene.(a) Left image of the input stereo pair.(b) The
predictions of our model.

(a) (b)

Figure 15: Experiment results on a road scene.(a) Left image of the input stereo pair.(b) The predictions
of our model.
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(a) (b)

Figure 16: Experiment results on a road scene.(a) Left image of the input stereo pair.(b) The predictions
of our model.

(a) (b)

Figure 17: Experiment results on akitchenscene.(a) Left image of the input stereo pair.(b) The predictions
of our model.
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(a) (b)

(c)

Figure 18: Experiment results on an indoor road scene.(a) Left image of the input stereo pair.(b) The
predictions without corrections from the fitted surfaces.(c) The predictions after surface corrections. Note
that due to outliers in the predictions, surface fitting may not improve original predictions.
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[23] N. Pugeault, F. Ẅorgötter, and N. Kr̈uger. Multi-modal scene reconstruction using perceptual grouping
constraints. InProc. IEEE Workshop on Perceptual Organization in Computer Vision (in conjunction
with CVPR’06), 2006.

[24] K. A. Stevens. The visual interpretations of surface contours.Artificial Intelligence, 17:47–73, 1981.

[25] D. Terzopoulos. Multi-level reconstruction of visual surfaces: Variational principles and finite el-
ement representations. Technical report, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1982.

[26] D. Terzopoulos. The computation of visible-surface representations.IEEE Trans. Pattern Anal. Mach.
Intell., 10(4):417–438, 1988.

[27] F. Ulupinar and R. Nevatia. Constraints for interpretation of line drawings under perspective projec-
tion. CVGIP: Image Underst., 53(1):88–96, 1991.

[28] F. Ulupinar and R. Nevatia. Perception of 3-d surfaces from 2-d contours.IEEE Trans. Pattern Anal.
Mach. Intell., 15(1):3–18, 1993.

17

152



Appendix G
Multi-modal Primitives (submitted): Local, Condensed, and Semantically Rich 

Visual Descriptors and the Formalisation of Contextual Information
N. Krüger, N. Pugeault and F. Wörgötter

( submitted )

153



Robotics Group
The Maersk Mc-Kinney Moller Institute

University of Southern Denmark

Technical Report no. 2007 – 4

Multi–modal Primitives: Local,
Condensed, and Semantically Rich

Visual Descriptors and the
Formalisation of Contextual Information
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Abstract

We present a novel representation of visual information, based on local symbolic descriptors
that we call primitives. These primitives: (1) combine different visual modalities, (2) associate
semantic to local scene information, (3) reduce the bandwidth of the information exchanged
across teh system. First, 2D primitives are extracted from images. In a second step, stereo–
pairs of 2D–Primitives are used to reconstruct information about the scene structure leading to
3D–Primitives with additional semantic properties.

Since the Primitives allow for strong predictions, based on statistical dependencies as well
as the deterministic change of image structure under coherent motion, they serve to initiate
a disambiguation process and form a link to higher level cognitive tasks. In this context, we
briefly describe different applications of our representation: (1) their role in an early cognitive
architecture integrating perceptual grouping and motion (2) depth prediction at homogeneous
image patches, (3) learning of object representations, and (4) grasping in the context of vision
based robotics.

We also discuss the distinguishing properties of our representation and compare them with
other approaches.

1 Introduction

There exists a large amount of evidence that the human visual system, in its first cortical stages,
processes a number of aspects of visual data (see, e.g., [1,2]). These aspects, in the following called
visual modalities, cover, e.g., local orientation [1,3], colour [3], junction structures [4], stereo [5] and
optic flow [3]. At the first stage of visual processing (called ’Early Vision’ in [6]), these modalities
are computed locally for a certain retinal position. At a later stage (called ‘Early Cognitive Vision’
in [6]), results of such local processing become integrated with the spatial and temporal context.
Computer vision has dealt to a large extent with these modalities separately and in many computer
vision systems, one or more of the above–mentioned aspects are processed (see, e.g., [7–9]).
An important problem, the human visual system as well as any artificial visual system has to cope
with, is the large amount of ambiguity and noise in these low level modalities that is irreducible
by local processes only. Reliable actions require a more stable representation of visual features.
As a consequence, a disambiguation process that makes use of contextual information is required.
In [10] we have described two main regularities in visual data (well recognised in the computer vision
community) that support such a disambiguation process: (i) coherent motion of rigid bodies; and
(ii) statistical interdependencies underlying most grouping processes [11–13]. These two regularities
allow predictions between locally extracted visual events, and verification of the spatio–temporal
coherence of transient perceptual hypotheses.
The establishment of such a disambiguation process presupposes communication of temporal and
spatial information, requiring the local representation of visual data to comply with the two prop-
erties:

Property 1 Predictability The local representation of visual data allows for rich predictions
between related visual events — e.g., the change of position and appearance of a local patch under
a rigid body motion.

and

Property 2 Limited Bandwidth The local representation of visual data reduces the dimension-
ality of the representation of the local signal. This allows for the process to work with limited
bandwidth when spatially and temporally distinct visual events become related by predictions.
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These two properties demand for a condensed representation of visual information and it is argued
in in [14] that the need for properties 1 and 2 naturally results in symbolic representations.
In this work, we present a novel kind of scene representation, based on local symbolic descriptors
that we call visual primitives (see Fig. 1). A primitive combines different visual modalities into
one local feature descriptor (see sections 2 and 3), and thus, allows for a condensed representation
of the visual scene (satisfying property 2). Furthermore, primitives allow for the formulate of
predictions (property 1) using statistical dependencies from grouping and motion. These statistical
dependencies bootstrap a disambiguation process that is described in, e.g., [15, 16].
The system we present processes information over multiple stages (for an overview, see Fig. 1),
described in the following sections. In section 2, individual modalities are computed by linear
and non–linear filtering processes. Section 3 describes the condensation process that extracts 2D–
primitives. In section 4, stereo–pairs of 2D–primitives are used to infer information about the
scene structure, in terms of 3D–primitives. Section 5 briefly describes some applications where this
framework was used. In section 6, we discuss the distinguishing properties of our representation
and compare them with other methods.

2 Analysis of the local signal structure

In section 2.1, we will first describe how we distinguish different kinds of local image structures.
The processing of the modalities (i.e. , orientation, phase and optic flow) is described in section
2.2 and 2.3. Fig. 1b illustrates the results of the process described herein.

2.1 Intrinsic dimension

Different kinds of image structures coexist in natural images: homogeneous image patches, edges,
corners, and textures. Furthermore, certain concepts are only meaningful for specific classes of
image structures. For example, the concept of orientation is well defined for edges or lines but not
for junctions, homogeneous image patches, or most textures. As another example, the concept of
position is different for a junction as compared to an edge or an homogeneous image patch — see
Fig. 2.1. In homogeneous areas of the image, no particular location can be defined (Fig. 2.1a);
therefore, an equidistant sampling is appropriate. For line or edge structures (Fig. 2.1b), position
can be defined using energy maxima. However, because of the aperture problem, the energy
maximum will span a one–dimensional manifold, and therefore the feature can be localised only up
to this manifold. This results in a fundamental ambiguity in the localisation of local edge or line
features. By contrast, a junction’s locus can be unambiguously defined by the intersection of the
lines (see Fig. 2.1c). Similar considerations are required for other modalities such as colour, optic
flow and stereo (see section 2.3).
Hence, before applying concepts such as orientation or position, we need to classify image patches
according to their junction–ness, edge–ness or homogeneous–ness. The intrinsic dimension (see,
e.g., [19,20]) is a suitable classifier in this context [18]. Ideal homogeneous image patches have an
intrinsic dimension of zero (id0), ideal edges are intrinsically One–dimensional (id1) while junc-
tions and most textures have an intrinsic dimension of two (id2). Going beyond common discrete
classification [20, 21], we use a continuous formulation [18, 22, 23] that allows for a formulation of
reasonable confidences for the different image structure classes. We classify image patches accord-
ing to the dimension of the subspace that is occupied by the local spectral energy. When looking at
the spectral representation of a local image patch (see Fig. 2.1), we see that the spectral energy of
an intrinsically zero–dimensional signal is concentrated in the origin (Fig. 2.1a), whilst the energy
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b)
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c)

d)

Left image Right image

Early Cognitive Vision

Early Vision

a)

d)

c)

Figure 1: Overview of the primitive extraction scheme. a) a stereo–pair of images obtained from
a pre–calibrated stereo rig. Therefrom, Early Vision processes are computed as shown in b): the
left image shows the optical flow extracted using the Nagel algorithm [17] — see section 2.3. Each
pixel represents the local flow at this location by its colour: the hue of indicates the orientation of
the flow vector (as shown on the borders of the image) and the intensity the magnitude of the flow
(where black stands for a zero flow); the bottom row of images shows the magnitude, orientation
and phase of the signal — see section 2.2 — from left to right respectively; The upper row shows
the id0, id1 and id2 confidences — see section 2.1 — from left to right respectively. In all those
graphs the intensity encodes the strength of the filter response (white for high, black for low). In
c) the information from the early vision is combined in a sparse, condensed way — see section 3.
The image shows the primitives extracted from the images shown in a) d) these primitives are
then matched across the two stereo–views and the correspondences thereof allows reconstructing
3D–primitives, that extend naturally the primitive information to 3D space — see section 4.
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Figure 2: (a) Illustration of the triangular topology of the intrinsic dimension — see [18]; (b) Dif-
ferent localisation problems faced by different classes of image structures: namely a) homogeneous
area; b) edge or line; and c) junction (see text).

of an intrinsically one–dimensional signal spans a line (Fig. 2.1b) and the energy of an intrinsically
two–dimensional signal varies in more than one dimension (Fig. 2.1c).
Thus, we compute for each pixel position x, the three confidences cid0(x), cid1(x), and cid2(x),
that take values in [0, 1] and add up to one — illustrated, for different scales, in the three bottom
rows of Fig. 3. For details of the computation, we refer to [18, 22, 23], and to [24, 25] for some
applications of this concept.
The current version of our system focuses on intrinsically one dimensional signals and uses the
triangular representation defined above to discard non–edge/non–line structures. There is some
ongoing work on the integration of homogeneous (id0) and corner structures (id2) into this frame-
work — see, [25,26].

2.2 Orientation and phase

The extraction of a primitive starts with a rotation invariant quadrature filter that performs a
split of identity of the signal [27]: it decomposes an intrinsically one–dimensional signal (as defined
in the previous section) into local amplitude (see Fig. 3, top row), orientation (see Fig. 3, second
row), and phase (see Fig. 3, third row) information.1

The local amplitude is an indicator of the likelihood for the presence of an image structure. Orien-
tation encodes the geometric information of the local signal while phase can be used to differentiate
between different image structures ignoring orientation differences. Phase for possible grey level
structures forms a continuum between [−π, π) and encodes the grey level transition of the local
image patch across the edge (as defined by the orientation) in a compact way (as one parameter
only), e.g., a pixel positioned on a bright line on a dark background has a phase of 0 whereas a
pixel positioned on a bright/dark edge has a phase of −π/2 (see Fig. 4a and, e.g., [27,29,30]). Note
that phase is 2π–periodic and continuous such that a phase of −π represents the same contrast
transition as a phase of π. Orientation θ (taking values in the the interval [0, π)) and phase ϕ are
topologically organised on a half torus (see Fig. 4c), and if we extend the concept of orientation
to that of a direction (therefore taking values in [−π, π), see also [21]) then the topology of the
direction/phase space becomes a complete torus (see Fig. 4b). On a local level, the direction is not
decidable [29]; therefore, we will use the half torus topology.
This topology is crucial for the definition of suitable metrics for phase and orientation. For example,

1Note that amplitude, orientation and phase can be analogously computed by Gabor wavelets or steerable filters
and that our representation does not depend on the filter introduced in [27]. For a discussion of different approaches
to define harmonic filters as well as their advantages and problems, we refer to [28].
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Figure 3: Illustration of the low–level processing for primitive extraction. Each column shows
the filter response for a different peak frequency: respectively 0.110 (left), 0.055 (middle) and
0.027 (right). Each row shows response maps for, from top to bottom, local amplitude, orien-
tation, phase, intrinsically zero–Dimensional (id0), one–Dimensional (id1) and two–Dimensional
(id2) confidences. In all of those graphs, white stands for a high response and black for a low one.
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(a) phase (b) direction/phase space (c) orientation/phase space

Figure 4: (a) Phase ϕ describes different intensity transitions, e.g., ϕ = π encodes a dark line on a
bright background, ϕ = −π/2 encodes a bright–dark edge, ϕ = 0 encodes a bright line on a dark
background and ϕ = π/2 encodes a dark–bright edge. The phase parameter embeds these distinct
cases into a 2π–periodic continuum shown in (a). [Acknowledgement: Michael Felsberg] (b) The
torus topology of the orientation–phase space. The phase value ϕ is mapped on the cross section
of the torus’ tube whereas the orientation θ maps to the revolution angle the torus. (c) When
direction is neglected, we get a half torus connected as indicated.

a black–white step edge (ϕ = π/2) with orientation θ should have a small metrical distance to a
white–black step edge (ϕ = −π/2) of orientation π − θ but a large distance to a black–white step
edge of orientation π−θ. However, a white line on a black background with an orientation θ (ϕ = 0)
should have only a small distance to a white line on a black background with an orientation π − θ
but a large one to any black line on a white background. Therefore, the extremities of the half–torus
are linked in a continuous manner as shown in Fig. 4c. For a discussion of the orientation/phase
metric, we refer to [31].
Note that there are also some problems involved with filters realising the monogenic signal we
are using, as discussed in [28]. First, it turned out that for the monogenic signal it is more
difficult to construct filter which allow for stable orientation and phase estimates at high frequencies
(compared to, e.g., Gabor wavelets) Second, in the monogenic filter approach there is only one
orientation estimate and one phase (in connection to the one orientation) estimate. However, for
intrinsically two dimensional signals such as corners and most textures more parameters are needed
to represent the local structure (e.g., most textures are characterised by multiple orientations at
different frequencies). Third, estimates for, e.g., optic flow can profit from averaging processes
over estimates over different orientations. However, in the context of intrinsically one dimensional
structures the monogenic signal allows for a good representation.
The application of such a spherical quadrature filter for the processing of our primitives has two
main advantages:

1. It allows us to use general advantages of the analytic signal (the aforementioned split of
identity, see [29]). Hence, phase is an immediate output of the spherical quadrature filter
processing and can directly be used as an attribute that describes the structural information
of an oriented image structure (see Fig. 4a).

2. Compared to the use of a Gabor wavelet transform (see, e.g., [?]), we do not need to sample
across different orientations: orientation is a direct output of the computation. Hence, we
only need to apply 3 filter operations compared to, e.g., 16 for Gabor wavelets (see, e.g., [9]).

We compute filter responses for three different scales, indicated hereafter by the peak frequency of
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the associated filter operations. 2 Fig. 3 shows the filter responses in terms of the local amplitude
m(x), orientation θ(x) and phase ϕ(x), alongside the resulting primitives, for three scales.

2.3 Optic flow and colour

Besides orientation, phase and the intrinsic dimensionality confidences, colour and local optic flow
are also associated to the primitive description vector. Kalkan and colleagues [24] compared optic
flow algorithms performance depending on the intrinsic dimensionality, i.e. , the effect of the
aperture problem and the quality on low contrast structures. It appears that different optic flow
algorithms are optimal in different contexts. In our system, we primarily use the Nagel–Enkelmann
algorithm [33] since it gives stable estimates of the normal flow at id1 structures. We denote the
optic flow computed at a position x by f(x).
Colour is not processed by filtering operations but sampled (i) on each side of a step edge, or (ii)
on each side of a line and on the line itself, depending if the phase describes a step edge or a line
structure.

3 Condensation scheme

Based on the pixel–wise processing described in section 2, we now want to extract a condensed
interpretation of a local image patch by selecting a sparse set of points to which visual modalities
become associated. An important aspect of the condensation scheme is that all main parameters
can be derived from one property of the basic filter operations called line/edge bifurcation distance.

Definition 1 The line/edge bifurcation distance dleb for a given scale is the minimal distance
between two edges for them to produce two distinct amplitude maxima.

Hence, a double edge will be represented by a pair of edge primitives if its width is larger than
dleb, by only one line primitive otherwise. Fig. 5a shows a narrow triangle for which two edges get
closer until they meet. Vertical sections of the local local amplitude (Fig. 5b) close to the vertex
have only one maximum, that splits into two distinct maxima further away from the vertex, where
the distance between the two edges is larger.
Using definition 1 we propose a condensation procedure in three steps: 1) Sampling: the positions of
features are computed with sub–pixel accuracy, according to the local intrinsic structure (section
3.1); 2) Elimination: positions that are too close to each other (and therefore would lead to
redundant descriptors) are disregarded (section 3.2); 3) Local interpretation: semantic attributes
become associated to the computed positions (section 3.3).
Fig. 5c,d, and e, show the primitives extracted after condensation for the three scales used in the
present paper — for peak frequencies of 0.11, 0.055 and 0.027, respectively.

3.1 Sampling

In section 2.1, it was discussed that the concept of position is different for different type of image
structures as defined by the three classes of intrinsic dimensionality. The coding of intrinsic di-
mension by three values (cid0(x), cid1(x), cid2(x)) allows us to select the most likely structure for
this patch, and thence to define an appropriate (according to its intrinsic dimension interpretation)
position candidate. However, if we do not want to make a decision about the type of local image

2Note that step edges have high amplitudes across scales, whilst line structures are represented as a line at coarse
scales, and as two step–edges at fine scales, (see section 3 and [32]).
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(a) original image

d
leb

d
k

(b) local amplitude

(c) peak frequency 0.110 (d) peak frequency 0.055

(e) peak frequency 0.027

Figure 5: Definition of the elimination parameters dleb and dk. See text.
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(a) (b) (c) (d)

k: 1 (1) 2 (2) 3 (3) 4 (4)   

1

2

3

l:
A2,2  x id2

x id1x id0

x2,1=x3,1

x1,1
=x1,2

x 3,2 

x 1,1 x 2,1
x 3,1

x 2,1
x 2,2 

d y

d x

Figure 6: (a) Hexagonal sampling: each hexagon is embedded in a disk A(i, j), with a radius rs.
(b) Three possible hypotheses for positions according to the three different intrinsic dimensions
(see section 3.1). (c) Because the disks A(k,l) overlap, the same position can be found in areas with
different index. For these redundant structures, one sample needs to be deleted (see section 3.2.1).
(d) Since the local amplitude can still be high for pixels with a certain distance from high contrast
structure, an elicited position xpq may not lie on the edge structure. These positions are redundant
since the structure that induced them is already more accurately represented (in terms of position)
by other primitives. Therefore, these positions are also disregarded (see section 3.2.2).
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Table 1: The scale–dependent parameters of our representation.
Peak frequency (pixels−1) fp 0.1103 0.0551 0.0275

Wavelength (pixels) λ 9.06 18.12 36.25

Number of tabs nt 11 23 33

Line/edge bifurcation (pixels) dleb 3 6 7.5

Hex. grid spacing in x (pixels) dx = 0.85dleb 2.55 5.1 6.37

Hex. grid spacing in y (pixels) dy =
√

3/2dx 2.21 4.42 5.52

Influence radius (pixels) dk = 2.2dleb 6.6 13.2 16.5

Condensation rate dco 85% 94% 97%

structure at such an early stage we can also code the three different candidates according to their
intrinsic dimension class (see Fig. 6b). These two approaches are implemented by two different
modes of the condensation algorithm with different advantages and disadvantages (see below).
To get candidates for our primitives, we first perform a hexagonal sampling (see Fig. 6a) of the
image into overlapping areas A(k,l) with radius rs, with k, l coding the hexagonal grid points.
Hexagonal sampling has a number of advantages discussed for example in [34,35]. In the context of
this paper, the most important difference with rectangular sampling is that the distance between
the centres of neighbour tiles is uniform in an hexagonal grid while in a rectangular grid diagonal
spacing is

√
2 times longer than horizontal or vertical. Since we want to extract symbolic descriptors

for each tile, the hexagonal sampling allows for a more evenly distributed symbolic description and
reflects more closely the isotropic structure of the original image filters. The parameters dx and
dy =

√
3

2 dx determine the spatial distance in x and y between the centre A
(k,l)
c of the tile A(k,l) and

the centres of the neighbour tiles.3 For a description of the mathematics of hexagonal sampling we
refer to, e.g., [34].
The optimal sampling distance dx is related to the line/edge bifurcation distance dleb — see Fig. 5c,
d and e. It turned out that a reasonable estimate for dleb is:

dleb =
1

3fp
, (1)

hence, we set dx = round(dleb) + 1 to be the smallest possible sampling distance within which
structures based on the amplitude information can be resolved. Because the line/edge bifurcation
distance dleb depends on the peak frequency fp,4 so does the sampling distance. All frequency
dependent parameters are shown in table 1:
We search on a disk around each A

(k,l)
c for candidate primitives positions. The radius rs of this disk

is chosen such that each point of the image is covered by at least one of the disks. In a hexagonal
grid, the maximum distance to a tile’s border is 2√

3
dx hence we set

rs = round(
2√
3
dx) + 1 (2)

We then look for optimal structure dependent primitive positions inside each tile, distinguishing
between the three intrinsic dimension’s classes:

3Note that the odd rows have an onset of dx/2
4note that it is also related to the spatial size, the filter’s band–width B, and the minimal number of tabs nt,

needed to represent the filter, for a detailed discussion see [28].
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3.1.1 Homogeneous image patches (id0)

At homogeneous image patches, the position cannot be defined by properties of the local signal
since it is constant. Therefore, the position x

(k,l)
id0 of a primitive representing an image patch A(k,l)

is defined by equidistant sampling (see Fig. 2.1a):

x
(k,l)
id0 = A(k,l)

c . (3)

This is illustrated in Fig. 7b.

3.1.2 Lines and edges (id1)

For a line or edge, the position x
(k,l)
id1 can be defined through energy maxima that are organised

as a one–dimensional manifold. Therefore, an equidistant sampling along these energy maxima is
appropriate (see Fig. 2.1b). For this, we look within the area A(k,l) for the energy maximum along
a line orthogonal to the orientation at A

(k,l)
c :

x
(k,l)
id1 = max

x∈g(k,l)
m(x), (4)

where g(k,l) is a local line going through A
(k,l)
c with orientation perpendicular to θ(A(k,l)

c ). This is
illustrated in Fig. 7c.

3.1.3 Junction–like structures (id2)

For a junction, the position x
(k,l)
id2 can be defined unambiguously as the maximum of the i2D

confidence in a local region (see Fig. 2.1c and [27]):

x
(k,l)
id2 = max

A(k,l)
{cid1(x)}. (5)

This is illustrated in Fig. 7d. 5

Our system runs in two modes. In the first mode, hereafter named complete mode, all three
hypotheses are conserved (see Fig. 6b). However, the position corresponding to the maximum
of three confidences (cid0(x), cid1(x), cid2(x)) is called the reference position x(k,l), and is used
thereafter, in the reduction of redundant descriptors, to compete with proximate candidates. In
the second mode, named contour mode, we only look at intrinsically one–dimensional signals, i.e. ,
we do the positioning according to Fig. 2.1b. The first mode allows for a complete representation of
the signal by also taking into account id0 and id2 structures. However, symbolic representation and
3D reconstruction of id0 and id2 signals are ongoing research topics (see, e.g. [25,26]). In the second
mode, the primitives symbolic representation, 3D reconstruction (see section 4), and structural
relations (such as co–colourity, symmetry and co–planarity), are well defined (see section 5.1).
All positions are computed with sub–pixel accuracy using the formula:

x̃0 = 1
sg

∑ws
i=−ws

∑ws
j=−ws

m(x0 + i, y0 + j)(x0 + i),
ỹ0 = 1

sg

∑ws
i=−ws

∑ws
j=−ws

m(x0 + i, y0 + j)(y0 + i),
(6)

5Note however, that it is well know that for energy based junction detectors there is a systematic bias towards the
inside of the junction (see, e.g., [?]). In [?, 18], we show that by making use of model knowledge (i.e., understanding
junctions as points in which lines intersect), a more precise localisation can be ensured.
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with m(x, y) being the local amplitude at pixel position (x, y) and

sg =
1∑ws

i=−ws

∑ws
j=−ws

m(x0 + i, y0 + j)
, (7)

where ws is set to ws = dleb. In section 3.3, the extracted features phase and orientation are com-
puted at the sub–pixel position, using bi–linear interpolation. Fig. 7b,c,d, show the positions found
for different intrinsic dimensions; Fig. 7e,f,g, show the primitives for those locations; Fig. 7h,i,j,
show the primitives extracted, in contour mode, with an origin variance > 0.3 and a line variance
< 0.3 are shown for the three scales considered in this work: namely for peak frequencies of 0.110
(Fig. 7h), 0.055 (Fig. 7i), and 0.027 (Fig. 7j). Different scales highlight different structures in
the scene. Furthermore, a lower peak frequency removes image noise and generates less spurious
primitives, whilst smaller structure of the image is become neglected — see [32,36] for a discussion
of the effect of scale in edge detection.
We evaluated the accuracy of the primitive extraction on a synthetic image pair, featuring a red
circle on black background, and recorded the results in Fig. 8. The top images compare the
primitives extracted with (left) and without (right) the sub–pixel localisation of the primitives.
Note that the sub–pixel localisation implicitly assumes a symbolic interpretation of the primitive
since it associates a meaning to a position (see also the discussion in section 6). Hence, we mainly
consider id1 primitives in the following. Effectively we only considered primitives with an origin
variance larger than 0.3 and a line variance lower than 0.3. The top images in Fig. 8a show the 2D–
primitives extracted and the bottom ones show the 3D–primitives reconstructed using stereopsis.
The 3D–primitives are shown from front and side views to illustrate the quality of the depth
reconstruction. It is visible in these graphs that the accuracy of 3D reconstruction is greatly
improved by a sub pixel localisation of the primitives. The accuracy of the reconstruction decreases
towards horizontal primitives due to the inaccuracy of stereo–matching on lines parallel to the
epipolar geometry.
Different levels of Gaussian noise were applied to the images, and the accuracy of the extracted
primitives were recorded in the graphs 8 (b), (c), (d) and (e). The solid lines show values with sub–
pixel accuracy and the dashed ones without. In graph (b) the density of the primitives extracted
depending on the noise is shown. As noise tends to increase the line variance in an image patch, less
i1D primitives become extracted with larger noise levels. The nect graphs chart the localisation
(c), orientation (d) and phase (e) errors for different noise levels. As a summary these results show
that sub–pixel localisation provides significantly better accuracy, both for 2D–primitives and for
3D reconstruction.

3.2 Elimination of redundant descriptors

Since areas A(k,l) are overlapping, the process described above can lead to identical positions found
in neighbouring areas: in Fig. 6c, the putative positions x(2,1) and x(3,1), elicited by two distinct
hexagonal cell, represent the same image location. Moreover, the filters spatial extension can lead
to proximate positions describing essentially the same image structure (see Fig. 6d, x(2,1) and
x(3,1)).
Therefore we apply an additional process where these redundant descriptors become eliminated.
This elimination process faces the following challenges:

• Proximate, yet distinct, putative positions should be preserved. For example, in the triangle
in Fig. 5 two edges converge. At some point, these edges become interpreted as a line and the
position should be on this line and the phase should become 0 or ±π. Until then, the triangle
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(a) original image (b) id0 locations (c) id1 locations (d) id2 locations

(e) id0 primitives (f) id1 primitives (g) id2 primitives

(h) peak frequency 0.110 (i) peak frequency 0.055 (j) peak frequency 0.027

Figure 7: Top row: (a) one image of an object. The black square indicates some detail of the
image illustrated in figures (b,c,d,e,f,g); (b,c,d): positions associated to the primitives assuming
different intrinsic dimensionality (from left to right, (b) id0, (c) id1 and (d) id2). Middle row
(e,f,g): primitives in each of those cases (from left to right, (e) id0, (f) id1 and (g) id2). Bottom
row (h,i,j): primitives extracted (from the full image) in contour mode, with origin variance > 0.3
and line variance < 0.3, for different peak frequencies (from left to right, (h) 0.110, (i) 0.055, and
(j) 0.027).
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front side

2D

3D

front side

with subpixel without subpixel

Left and right 
images

(a)

(b) (c)

(d) (e)

Figure 8: Inset: the pair of synthetic images used for this measurement. (a) 2D– and 3D–primitives
extracted from the inset images, respectively with (left) and without (right) sub–pixel localisation.
(b,c,d, and e): report the density and accuracy in localisation, orientation and phase of the primi-
tives. The horizontal axis shows the noise level (a noise level of 1 stands for 100% Gaussian noise)
added to the image prior to primitive extraction. The solid line shows the accuracy with sub–pixel
localisation and the dashed line without. Error bars in (c,d, and e) show the variance.
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Figure 9: Artificial sequence used to evaluate the accuracy of primitive extraction (see Fig. 8).

should be represented by two edges with phase ±π
2 . Hence, the elimination process should

not eliminate these ‘independent’ edges although they can be rather close to each other. The
limit of separability is the line/edge bifurcation distance dleb defined above.

• Distant, yet redundant, putative positions should be discarded. Due to the kernels spatial ex-
tent, a given image structure will generate significant response within a radius dk that is larger
than dleb. As a consequence, eliminating candidates closer than dleb preserves all distinct edge
structures, plus numerous redundant structures. Conversely, eliminating candidates with a
distance smaller than dk discards all redundant, plus some distinct structures.

We tackle this problem by a two stage elimination process described in sections 3.2.1 and 3.2.2.

3.2.1 Elimination based on the line/edge bifurcation distance dleb

First, all candidates x(k,l) become ordered according to the associated amplitude m(x(k,l)). Start-
ing with the candidates with highest local amplitude, we discard all other candidates x(k′,l′) within
a radius dleb.6 Since we order the candidates according to the local amplitude, a candidate cor-
responding to a stronger structure suppresses candidates with weaker structure. Thereby, all
non–distinct edges (according to the line/edge bifurcation distance) become deleted but redundant
edges are still being preserved. In Fig. 10b, we see that many spurious candidates remain after the
first elimination process that are caused by edges with distance smaller then dk (see section 3.2.2).

3.2.2 Elimination based on the influence radius dk

The local magnitude can be significantly affected by image structures within a radius dk. In the
second elimination step, starting again from the candidates with the highest local amplitude, the
distance between pairs of remaining candidates is compared to dk, empirically approximated by
dk = 2.2dleb. For a pair of intrinsically two–dimensional structures it is sufficient to have a distance

6Note that for the quality of the process it is important that all positions are computed with sub–pixel accuracy
already at this stage.
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(a) Before elimination (b) Elimination using dleb

(c) Elimination using dk (d) Extracted primitives

Figure 10: Three stages of the elimination process and the final primitive representation.

smaller than dleb since they naturally represent maxima in the amplitude representation [27]. For
an intrinsically one–dimensional structure, there will be a slant in the local amplitude surface at the
redundant structure reaching its maximum at the edge/line structure and decreasing with distance
from the edge (see Fig. 5 and Fig. 11). This slant can be checked to distinguish spatially close
yet independent structures, that we want to keep, and nearby redundant structures, that we want
to discard: For each candidate in a pair with distance smaller dk, we test whether the structure
is an amplitude maximum, along a line orthogonal to the local orientation (see Fig. 11). This is
achieved by comparing each candidate’s amplitude to its direct neighbours, on both sides of the
edge, as indicated by the local orientation.7 Then, redundant structures, i.e. , candidates that are
not local maximum, are discarded.
The result of this second elimination stage is shown in Fig. 10c, and the resulting primitives in
Fig. 10d. Fig. 12 shows the primitives extracted for an artificial test image, for different scales. The
image in Fig. 12a shows vertically alternating black/white step–edges, getting narrower towards
the right of the image. The primitives extracted at the three scales, for peak frequencies of 0.110,
0.055 and 0.027, are shown in Fig. 12b, c and d, respectively. The effect of the double elimination
process at different scales can be seen in this figure. For example if all of the narrower step edges
to the right of the image are distinctly extracted in Fig. 12b, only one of the two is extracted
in Fig. 12c, while in Fig. 12d the same edges become intrinsically two–dimensional and are not
extracted anymore.

3.3 Association of visual attributes and confidences

We then associate visual attributes to the remaining positions xi: orientation θ, phase ϕ, and
optic flow f are computed pixel–wise using filter processes of spatial extent dk. Since positions

7Note that the criterion ‘local maxima’ that is applicable for id2 structures can not be applied since edge like
structures form a ridge in the local amplitude surface (see Fig. 5).
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Figure 11: Extraction of redundant primitives due to the slant in the amplitude surface. (a) case
of a valid double edge, two primitives are correctly extracted; (b) case of an erroneous extraction
of a redundant primitive: because of the mild decay of the amplitude curve, the same structure
can cause the extraction of a primitive at a location far from the original structure, (where the
amplitude of the response there is still above a given threshold t).

(a) original image (b) peak frequency 0.110

(c) peak frequency 0.055 (d) peak frequency 0.027

Figure 12: Illustration of the primitives’ sampling density: (a) shows an image with gradually
(from left to right) narrower white and black bars; (b,c, and d) show the primitives extracted for
different peak frequencies.

16

171



(a) An edge primitive (b) A line primitive

Figure 13: Illustration of the symbolic representation of a primitive for a id1 interpretation, for (a)
a bright–to–dark step–edge (phase ϕ 6= 0) and (b) a bright line on dark background (phase ϕ 6= π

2 .
1) represents the orientation of the primitive, 2) the phase, 3) the colour and 4) the optic flow.

are computed with sub–pixel accuracy, we can also interpolate sub–pixel values for orientation,
phase, and optic flow using bi–linear interpolation. Let x̃0 and ỹ0 be the positions computed with
sub–pixel accuracy (see section 3.1); let δx and δy be the distance to the discrete lower pixels xl

and yl, and xh = x0 + 1 and yh = y0 + 1; then the bi–linear interpolation computation leads to the
formula:

θ̃(x̃) = θ̂(xl, yl)(1− δx)(1− δy) + θ̂(xl, yh)(1− δx) ∗ δy (8)

= θ̂(xh, yl)δx(1− δy) + θ̂(xh, yh)δxδy (9)

Note that for the interpolation of orientation and phase, the specific topology of the orienta-
tion/phase space needs also to be taken into account. Hence, θ̂ is transformed such that the
distance between all pairs of the set θ̂(xl, yl), θ̂(xl, yh), θ̂(xh, yl), θ̂(xh, yh) is smaller than π

2 and
θ̂(x̃) is in [0, π).
For the test picture shown in Fig. 8 we get a localisation error in the area of 0.1 pixel (i.e. im-
provement by a factor four). Bi–linear interpolation of orientation and phase, based on the the
sub–pixel positioning, leads also to improvements of a factor 2 and 6, respectively (on the highest
frequency level). The effect on reconstruction is also demonstrated in Fig. 8.
Although colour information is available at each pixel position, it is heavily redundant, especially
for id0 and id1 signals. For a step–edge structure (π

4 < |ϕ| < 3π
4 ) it is natural to distinguish

between the colour on each side of the edge (cl, cr) whilst for a line structure (|ϕ| ≤ π
4 or |ϕ| ≥ 3π

4 )
the colour of a middle strip cm (i.e. on the actual line) should also be coded (see Fig. 5c–e and
13). We discussed in section 2.2, the phase can distinguish among these two cases.
Thus we obtain a parametric description of local image patches that we call primitive πi. For a
step–edge this representation is

πi = (xi, θ(xi), ϕ(xi), (cl(xi), cr(xi)),f(xi)) (10)

and for line structures

πi = (xi, θ(xi), ϕ(xi), (cl(xi), cm(xi), cr(xi)),f(xi)) . (11)

The primitives’ parameters are explicit and the set of primitives provides a condensed representation
of the image. The condensation factor can be computed by the ratio of the number of bits needed
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to store the local image patch a primitive stands for. For the highest frequency, such a primitive
represents a local image patch of a radius of appr. 3 pixels (i.e. if one considers a RGB colour
image: π ·32 ·3 ≈ 85 values). The primitive has a dimension of 10 for an edge like structure and 13
for a line–like structure (because optic flow encodes temporal information, it is disregarded). Thus,
encoding a primitive, at the highest frequency level, requires maximally 13 bytes, compared to 85
bytes in the original image, leading to a condensation rate of dco ≈ 85%. Analogously, we get a
condensation rate of ≈ 94% and ≈ 97% for the other two frequency levels. Note when considering
3D–primitives (see section 4) the condensation rate further increases.
Table 1 shows all parameters included in the primitive extraction. Note that these parameters
are either derived from the line/edge bifurcation distance (dleb), non–critical (ws), or based on
decisions involving a trade off between computational complexity and precision (dk).

4 Computation of 3D–primitives

So far we have presented multi–modal image descriptors that code 2D information. However,
these descriptors represent visual events occurring at a certain 3D position in space. This depth
information is essential for higher level processes because of two reasons. First, humans and robots
act in a 3D world where depth information is valuable for, e.g., navigation or grasping. Second,
since many structural dependencies of visual events (e.g., rigid body motion) are working on 3D
structures, 3D information is essential their formalisation, and for the disambiguation processes
they underlie (see [15]).
In the following, we describe an extension of the image primitives to spatial primitives. Thus, the
semantic information coded in the image primitives is transferred into the 3D domain.
Given a pair of corresponding points (see [15]) between the left and right images, a meaningful
3D interpretation of this stereo–pair is a 3D point. Contours, however, hold a 2D orientation, and
therefore 3D–primitives need to encode the reconstructed 3D orientation Θ beside the 3D position
X. This orientation is computed as the intersection of two planes in space, each defined by the
optical centre of one camera and the line in the image plane described by the image primitive’s
position and orientation — see Fig. 14. The intersection of these two planes in space is a 3D line
that provides us with the orientation of the 3D–primitive. In [37], it was shown that using line
correspondences for the reconstruction of 3D orientation was generally more accurate than point
correspondences.
Phase Φ and colour C are reconstructed in space as the mean value between the two corresponding
image primitives: Φ = 1

2(ϕL + ϕR), and C = 1
2(cL + cR)

Furthermore, these two modalities encode surface information (respectively contrast and colour
transition across an edge); thus, we need to define a 3D surface patch onto which these apply.
Unfortunately, it is not possible to reconstruct the exact surface from local information: for a pure
id1 signal, the surface on one side does not allow finding the additional correspondence that would
be required for the reconstruction of a 3D surface. Moreover, in case of a depth discontinuity, the
colour information might come from a 3D position that is completely independent from the 3D
orientation information (i.e. , the background).
We propose to define as a priori 3D surface the plane that is most stable under small viewpoint
variations (see Fig. 14). This surface is computed using the 3D orientation of the primitive and an
additional Local Surface Guess vector Γ, that is defined as follows:

Γ = Θ× Vpov, (12)
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Figure 14: Illustration of the reconstruction of a 3D–primitive from a stereo pair of 2D–primitives.

such that the surface is normal to Vpov, and Vpov is defined as follows:

Vpov =
1
2

(−−−→
CLX +

−−−→
CRX

)
, (13)

where
−−−→
CLX and

−−−→
CRX are the two optical rays joining the location of the primitive X with the

optical centre of the left (CL) and right (CR) camera. The vector Γ also identifies each side of the
3D line, which is critical for modalities like colour and phase that describe the modality transition
across the contour.
These allow reconstruction of spatial primitives Π(i,j) each having the parametric description:

Π(i,j) = (X,Θ,Φ, (C l,Cm,Cr)). (14)

The j index represents the alternative 3D entities generated from different stereo correspondences
in the right image to the ith primitive in the left image. Since a final decision can usually not be
made solely based on local information, multiple hypotheses are kept at this stage. In the following
section, we will describe different approaches to overcome this ambiguity.
Fig. 8a, bottom, shows front and side views of the 3D primitives reconstructed with (left) and with-
out (right) sub–pixel localisation. The side view offers a better visualisation of depth estimation’s
quality.8 It is visible in these images that the sub–pixel localisation of the primitives described in
section 3.1 allows for a notably better 3D–reconstruction. The effect of sub–pixel accuracy, for a
real scene, is illustrated in Fig. 15, where (a) and (b) show the stereo pair of images that were used,
(c) and (d) the 2D–primitives extracted from the left image, with and without sub–pixel accuracy,
and (e) and (f) the 3D–primitives reconstructed in both cases.

8Note that the accuracy of the depth estimates decreases for horizontal structures. This is due to the ambiguity
in reconstructing lines parallel to the epipolar line.
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(a) left image (b) 2D–primitives, sub–pixel locali-
sation

(c) 3D–primitives, sub–pixel locali-
sation

(d) right image (e) 2D–primitives, pixel localisation (f) 3D–primitives, pixel localisation

Figure 15: Reconstruction of 3D–primitives in a real scenario. (a) and (d) show the pair of stereo
images, (b) (resp. (e)) the 2D–primitives extracted with (resp. without) sub–pixel localisation,
and (c) (resp. (f)) the spatial primitives reconstructed with (resp. without) sub–pixel localisation.

5 Applications

The primitive representation introduced in this paper has been applied in various contexts (briefly
described in this section) and has been part of three different European projects [38–40] in the area
of cognitive vision and robotics. The computation of the 3D primitives (this includes computation
of 2D primitives in a left and right image (512x512 pixels) as well as the stereo matching and the
reconstruction) takes currently between 1 and 2 seconds on a PC9.
The primitives described so far are condensed localised descriptors with explicit semantics, and
therefore, symbolic descriptors of a local scene structure. Since the primitives are processed locally,
they are necessarily as ambiguous as the locally computed modalities that they code. However, a
number of relations defined upon the primitives (described in the next sub–section) can be used to
disambiguate the local information using the global context.

5.1 Relations and operations defined on primitives

Since primitives are a symbolic description of local image patches, the relations and operations
defined on a primitive provides the context wherein information is processed. Here, we briefly
provide four definitions of primitives’ second order relations: collinearity, rigid body motion, co–
planarity and co–colourity (see also Fig. 16a).

9Computational time depends for example on the amount of primtives which depend on the image structure
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5.1.1 Good continuation (collinearity)

In [15], a measure of the likelihood for two 2D–primitives to belong to the same image contour
C(πi, πj) is defined (see Fig. 16a,i). This allows for the definition of a stereo constraint (see,
e.g., [41, 42]) that makes use of local image information (as encoded by the primitives) as well as
contextual information gathered from other primitives in the vicinity (see [15]). The collinearity
constraint can naturally be extended to 3D–primitives (C(Πi,Πj)) by applying the following rule:

C(Πi,p,Πj,q) ≡ C(πi, πj) ∧ C(πp, πq), (15)

where Πi,p and Πj,q are the 3D–primitives reconstructed from the stereo pairs (πi, πp) and (πj , πq),
respectively.

5.1.2 Rigid body motion

The change of position and orientation induced by a rigid body motion (RBM(Π)) can be computed
analytically (see, e.g., [43]); phase and colour can be approximated to be constant (see Fig. 16a,iv).
In [?] we used a simple scheme to track primitives over time (using the optic flow information)
and used it to estimate the camera motion from our visual representation, assuming the absence
of independently moving objects.

5.1.3 Co–planarity

The relation co–planarity Cop(Πi,Πj) between two 3D–primitives (see Fig. 16a,ii) indicates the
likelihood of these two primitives to be part of the same surface (see section 5.4) and suggests a
way to grasp the object the primitives’ pair belongs to (see section 5.3).

5.1.4 Co–colourity

The relation co–colourity (see Fig. 16a,iii) expresses the similarity between two primitives’ colour.
10

Semantic relations are used at a stage of processing after the condensation step (called early
cognitive vision in [6]), in the following manners:

• predictions between visual events become formulated (such as the change of a local image
patch under motion or the likelihood of being part of the same collinear group) and by that
the locally ambiguous information becomes, disambiguated (see [15]),

• sets of primitives can become connected to higher visual entities such as 3D surfaces (section
5.4) and objects (section 5.2),

• low–order combinations of primitives become associated to robot actions such as grasping
(section 5.3).

10For each primitive only the colour component on the inner side of the surface defined by the pair of primitives
is considered.
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Figure 16: (a) Relations defined on the multi–modal primitives (b) Extraction of object represen-
tations. (c) Grasping options generated by second order relations of primitives. i) Three of the
elementary grasps that can be inferred from one pair of co–planar primitives (identified by the two
red dots on the object). ii) left: One synthetic scene; right: the 3D–primitives reconstructed and
three examples of the grasps inferred by the system described in [44]. (d) Depth predictions based
on co–planarity relations (note since in the stereo images occur rather large disparities there is a
certain amount of outliers which however do not effect the surface prediction).
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5.2 Object model learning

Our visual representation was used to learn object shapes. The object is manipulated by a robotic
arm in front of a pair of stereo cameras. Since the motion of the robot arm is known, and the
stereo and robot system are properly calibrated, we can use the RBM relation described above to
track 3D–primitives describing the object held by the arm in a robust manner. Thus, we can infer
that 3D–primitives that do not move according to the motion of the arm are therefore not part
of the manipulated object. Furthermore, object features that were not initially observed can be
added to the object representation. Therefore, this algorithm allows us to:

• remove spurious 3D–primitives from the object model, and

• complete the object model using information from all available viewpoints.

Assuming that the arm’s motion spans adequately the object’s pose space, a full 3D model of the
object can be generated by this procedure [16].
This is illustrated in Fig. 16b), where i) shows the robotic setup holding a pan–like object. The
green dots show the 3D–primitives that were successfully tracked over time, whilst red and black
dots show the primitives that were not. On the right hand side, the learnt object model is shown,
from a different viewpoint.11 Then panels ii) and iii) show the shape model obtained for two
different objects.

5.3 Generating grasping hypotheses

Our representation has also been used to define grasping options in a scene (see Fig. 16c) and [44]).
Essentially, co–planar primitives (supported by the relations collinearity and co–colourity) define
planes that are good candidates for an initial grasping hypothesis. Fig. 16c,i) shows three examples
of grasping hypotheses generated from a single pair of co–planar 3D–primitives. Fig. 16c,ii) shows,
on the left, one image from a scenario created using the grasping simulation software GraspIt, that
was also used for the evaluation of our approach (for details, see [44]). On the right, we see the
3D–primitives reconstructed from this scene, alongside three of the candidate grasps generated by
our system on this scenario (shown from a different viewpoint than the image).
If evaluated as successful by haptic information, such a grasping action gives the physical control
over objects required for the object learning sketched in section 5.2. This provides a robot with
a basic exploratory behaviour: 1) try to grasp at the (unknown) environment; 2) if successful,
manipulate the object; 3) learn a full 3D representation of the object.
Such a behaviour enables a naive robot to progressively learn an internal representation of the
world with only minimal prior world knowledge. This is relevant in the context of the European
project PACO+ [38].

5.4 Depth prediction at homogeneous image areas

The primitives introduced here represent id1 structures. It is known that it becomes increasingly
difficult to find correspondences between local patches the more they lack structure (i.e. tending
toward the id0 corner of the iD triangle, see Fig. 2.1). On the other hand, it is known that lack of
structure also indicates lack of a depth discontinuity [25, 45]. Moreover, it was statistically shown
in [46] that co–planarity allows predicting depth at homogeneous image surfaces (see Fig. 16d).
Such a scheme can be used to ‘fill in’ our representation at homogeneous surfaces using co–planar

11The gap in the representation, on the handle of the pan, is a part of the object occluded by the gripper. The
model could be completed by using at least one alternative grasp.
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relationship between id1 primitives: in Fig. 16d, the homogeneous primitives inferred using such a
scheme are shown with a red border on each predicted homogeneous primitive. One can see that
the whole road becomes inferred from the reconstructed lane markings. Note also that spurious
3D–primitives (reconstructed due to nearly horizontal structures in the images) do not generate
hypotheses due to their inherently random distribution.

6 Discussion

In this section, we give some information about the context of our representations in terms of their
role in a cognitive vision architecture and the biological analogy of a primitive to a hypercolumn
( [3]). Furthernore, we discuss the relation of our feature descriptor to other visual descriptors and
give some indications about current and future work.

6.1 Primitives as part of a cognitive vision system

The primitives introduced in this paper are one pillar in the Early Cognitive Vision paradigm
described in, e.g., [47], developed in the context of the European project ECOVision [39]. It is now
applied within two other European projects addressing higher level tasks such as scene interpreta-
tion in a driving assistance scenarios (Drivsco [40]) and cognitive robotics (PACO+ [38]). While in
the ECOVision project, the primitives were used for the disambiguation of local information and
outlier removal using contextual knowledge (see, e.g., [48]), in Drivsco we address general 3D scene
interpretation tasks such as the explicit structuring of visual information in terms of larger entities
and the linking of such entities to driving actions. We also address classical computer vision tasks
such as object model learning, pose estimation, and object recognition. In addition to these tasks,
in PACO+ we interface our representations with a robot’s actions [16] and with a high level plan-
ner [49]. The broad applicability of this representation stems from the ECOVision project’s goal
to develop a general vision machine, in analogy to the human visual system (see subsection 6.2).
In particular, we were interested in allowing for a semantic interpretation of visual scenes. For
this, we believe that a transition of the representation of visual information to a symbolic level is
required and that this transition is driven by the two properties Predictability and Condensation
mentioned in the introduction. This allows us to formulate strong and efficient predictions coded
in the relations described in subsection 5.1 that can be used to disambiguate the information as
well as to bridge to higher level representations of objects and relations of objects to actions.
The transformation of visual information to a symbolic level as done in the condensation process
described in section 3 can be motivated by three drawbacks of pixel–wise interpretation of visual
sub–aspects such as orientation, phase, and optic flow (a more detailed discussion is given in [50]).

6.1.1 Low predictability

Disambiguation requires predictions of events as a consequence of other events. In [14], we showed
that predictability on the pixel level is weaker than on a level where attributes with richer semantic
content are computed. For example, certain Gestalt laws such as collinearity and parallelism can
only be found in visual data when making use of orientation instead of the actual pixel value [11–13].
Going beyond, we showed in [51] that the statistical dependencies of local line segments correspond-
ing to these Gestalt laws become much more pronounced within our multi–modal representation.
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6.1.2 Ill–defined semantic of features associated to position

The computation of a feature descriptor is based on information that covers a larger spatial area.
For example, to estimate orientation we need at least three samples. In general, depending on their
bandwidth, filters cover large spatial areas to achieve higher precision of estimates. Therefore local
orientation’s estimation from linear filters suffers from the superposition of the true orientation with
values from other structures in the vicinity, that become more prominent with the distance. Hence,
the orientation computed close to an edge still depends on this edge but also on other surrounding
structures and therefore the orientation at a pixel position that is not located precisely on an edge is
ill–defined. As a consequence, beside the need to condense the image information for establishing
contextual processes, the features themselves need to be associated to discrete locations in the
image. Hence, in our representation, the primitives’ position is defined by a dynamic process, and
visual attributes are associated to this position.

6.1.3 Cross–connection of modality processing

Visual modalities’ processing can be supported by cross–connections between modalities. For ex-
ample, a reasonable colour coding depends on the orientation and phase. Since a step edge distin-
guishes between two areas of different colour it makes sense to code these two values separately. On
the other hand, for a line–like structure there are three areas we need to distinguish (see Fig. 13).
Therefore, we need to understand the feature extraction process as a recurrent process wherein the
computation of individual modalities interact with each other. By using the primitives, we make
use of such cross–connections for example for colour and depth processing (see section 5.4).

6.2 Biological analogy

Primitives have a direct biological analogy, discussed in detail in [52], that we will summarise here.
The main information stream in the human visual system projects to area V1 in the cortex [53].
The structure of V1 has been investigated by Hubel and Wiesel in their ground–breaking work [1,3].
V1 is organised as a retinotopic map that has a specific repetitive pattern of substructures called
hyper–columns. Hyper–columns themselves contain so called orientation columns and blobs which
are mainly involved in colour processing. However, in an orientation column, we find cells sensitive,
beside orientation, to disparity [5, 54], local motion [55], colour [3], and phase [56]. Also specific
responses to junction–like structures could be measured [4]. Therefore, it is believed that V1
processes local feature descriptions, analogous to the primitives which can be regarded as functional
abstractions of hypercolumns. Moreover, there is a high (feed–forward and feedback) connectivity,
within V1 and towards other visual areas. This is thought to be the basis for the processing of
contextual information [53]. Such connectivity is analogous to the contextual information gathered
from the primitives’ relations defined in 5.1.

6.3 Relation to other local descriptors

Feature extraction from images is the combination of two distinct, yet dependent, processes (see,
e.g., [57, 58]): first comes the detection of interest points, which are locations in the image likely
to contain information (this is required to obtain a sparse feature map); second, the information
encoding at these locations into feature descriptors. There has been a large amount of work on
both of these aspects.
A prominent example of an interest point detector is the Harris corner detector [59], and the
scale adapted Harris–Laplace detector proposed by [58], which extract features at locations that
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have maximal local variations in space. This can be compared to the concept of intrinsically
two–dimensional points presented in section 2.1. Edge detectors, like Canny’s classical algo-
rithm [60], zero–crossings [7], or phase congruence [30], return edge pixels (similar to intrinsically
one–dimensional points in section 2.1). The Hessian–Laplace, localise points in space at the local
maxima of the Hessian determinant and in scale at the local maxima of the Laplacian of Gaus-
sian. This detects blob–like structures, that could be compared to intrinsically zero–dimensional
structures presented in section 2.1.
The extracted features should be robust (ideally invariant) under illumination and viewpoint
changes, while remaining distinct. In other words, an ideal feature descriptor allows for a metric
such that: features extracted from the same 3D area under different perspectives are proximate,
and features originating from different 3D areas are distant. Although it has been shown that such
a metric, in the general case, do not exist [61], the recent years have seen the development of ro-
bust and affine invariant descriptors. In particular, it has been shown that SIFT features [62], and
derivatives such as GLOH [58], are very efficient for a large set of matching tasks including: multiple
view reconstruction [63], object recognition [62], pose estimation [64], and image retrieval [65].
However, although we recognise the importance of invariance in computer vision, this is not the
primary motivation for our representation, but rather our goal is to initiate a process wherein
scene structures’ geometric and appearance information become represented explicitly in terms of
local symbolic descriptors and by semantic relations between them, both in 2D and 3D. Thus we
intent to bridge the gap between early image processing and higher stages of visual and cognitive
processing that require an abstract symbolic description of the world, as addressed, e.g., in the
EU–projects Drivsco [40] and PACOplus [38]. Because our representation’s explicitness, we are
able to use the necessary structural knowledge for object’s and action’s representation. In this
context, our scene representation based on multi–modal primitives addresses a number of issues in
an original way:

6.3.1 Multi–modality

primitives cover the main visual modalities established in computer– and human vision and, hence,
carry a rich semantic interpretation expressed in local symbols and their relations.

6.3.2 Condensation

primitives reduce the dimensionality of image data while preserving its significant aspects (e.g.,
in [66] we showed that primitives allowed for matching performance comparable to normalised
cross–correlation).

6.3.3 Different experts for different structures

the interpretation of the local signal by primitives is not static but depends on the intrinsic signal
structure, leading to a system of different experts for different signal structures, such as edges,
lines, homogeneous patches and corners (as in the human system).

6.3.4 Primitives initiate disambiguation

primitives are not a final statement about a scene’s local structure; indeed the confidence associ-
ated to each primitive as well as its parameters can become modified in disambiguation processes
formalising contextual information.
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Figure 17: Impulse responses of the DOP filter and its Riesz transforms. From left to right: DOP
filter, first Riesz transform, second Riesz transform. From top to bottom: scales (1,2), (2,4), (4,8).

6.4 Current and future work

Currently, our system treats different scales independently; this is appropriate since so far we only
deal with edge–like structures, that show stable properties across scales. Nevertheless, selecting the
optimal scale of processing would reduce memory and computational requirements while improving
the overall robustness of the edge representation. An extension of our approach into scale–space
where scale itself expressed by a feature (see, e.g., [32, 36,67]) is being considered.

Furthermore, we intend to introduce symbolic descriptors for different (other than edge) image
structures. For homogeneous image patches this has been already discussed in section 5.4. In [26],
we have discussed an extension of our approach to junction–like structures. We note that this
requires not only a junction detection and interpretation algorithm but also the definition of ap-
propriate relations between different junctions as well as between edges and junctions. We are also
currently doing the first steps towards the representation of texture which in particular requires a
representation of different scales.
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A Split of identity

Quadrature filters based on the monogenic signal [27] are rotation invariant, i.e. they commute
with the rotation operator. Hence, for an appropriate choice of polar coordinates, two coordinates
do not change under rotations (amplitude and phase), whereas the third coordinate directly reflects
the rotation angle. This kind of quadrature filter, which is called spherical quadrature filter [19],
is formed by triplet of filters: a radial bandpass filter and its two Riesz transforms [21]. As in [19]
we construct the bandpass filter from difference of Poisson (DOP) filters, in order to get analytic
formulations of all filter components in the spatial domain and in the frequency domain. The DOP
filter is an even filter (w.r.t. point reflections in the origin) and its impulse response (convolution
kernel) and frequency response (Fourier transform of the kernel) are respectively given by:

he(x) =
s1

2π(|x|2 + s2
1)

3
2

− s2

2π(|x|2 + s2
2)

3
2

(16)

He(u) = exp(−2π|u|s1)− exp(−2π|u|s2) . (17)

For convenience, we combine the two Riesz transforms of the DOP filter in a complex, odd filter,
yielding the impulse response and the frequency response:

ho(x) =
x1 + ix2

2π(|x|2 + s2
1)

3
2

− x1 + ix2

2π(|x|2 + s2
2)

3
2

(18)

Ho(u) =
u2 − iu1

|u|
(exp(−2π|u|s1)− exp(−2π|u|s2)) , (19)

respectively. The impulse responses of the filters for (s1, s2) = (1, 2), (2, 4), (4, 8) are shown in
Fig. 17.
The split of identity (i.e. the separation of the signal into local amplitude, orientation and phase)
is obtained by switching to appropriate polar coordinates. In particular, we transform the filter
responses according to

m(x) =
√

Ie(x)2 + |Io(x)|2 (20)
θ(x) = arg Io(x) (mod π) (21)
ϕ(x) = sign(={Io(x)}) arg(Ie(x) + i|Io(x)|) , (22)

which gives the desired amplitude, orientation, and phase information.
Fig. 18 shows a radial cut through the DOP bandpass filters for a certain range of scales and
their superposition, demonstrating a homogeneous covering of the frequency domain. For infinitely
many bandpass filters, the superposition is one everywhere, except at the origin. In our system,
we apply filters on three frequency levels (see Fig. 17). The applied bandpasses are indicated by
the darker colour in Fig. 18.
The local orientation associated to the image patch is described by θ(). The orientation parameter
θ and the phase parameter ϕ can take values in [−π, π) (see figure 4). However, this would lead to
a redundant representation since, e.g., a horizontal dark/bright edge can be interpreted as an edge
with orientation π/2 and phase π/2 but also as a bright/dark edge with orientation 3/2π and phase
−π/2. A parametrisation of orientation between [0, 2π) is usually refered to as direction. However,
direction can not be unambiguously estimated locally (see [29, 31]). Therefore, we restrict the
orientation values to [0, π). Another problem, that becomes apparent in Fig. 4 is the singularity
in orientation for phase ϕ = 0 and ϕ = −π. Indeed, all orientations are valid close to those
singularities. The deeper reason for that is (see IEEE, overcomed by averaging).
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Figure 18: DOP bandpass filters and their superposition approaching the identity (x–axis repre-
senting the frequency). The superposition and the filters applied in this paper are indicated by the
darker lines.
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Abstract

A novel method is introduced for optimal estimation of rigid camera motion from instantaneous velocity measurements. The error
surface associated with this problem is highly complex and existing algorithms suffer heavily from local minima. Repeated minimization
with different random initializations and selection of the minimum-cost solution are a common (albeit ad hoc) procedure to increase the
likelihood of finding the global minimum. We instead show that the optimal estimation problem can be transformed into one of arbitrary
complexity, which allows for a gradual regularization of the error function. A simple reweighting scheme is presented that smoothly
increases the problem complexity at each iteration. We show that the resulting method retains all the desirable properties of optimal
algorithms, such as unbiasedness and minimal variance of the parameter estimates, but is substantially more robust to local minima.
This robustness comes at the expense of a slightly increased computational complexity.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Egomotion; Optic flow; Calibrated camera; Local minima; Reweighting

1. Introduction

The instantaneous velocity or optic flow field encoun-
tered by a moving observer contains an enormous amount
of information related to the three dimensional (3D) struc-
ture of the environment and to the presence and motion of
independently moving objects. Knowledge of the egomo-
tion or self-motion of the observer is a necessary prerequi-
site to obtain this valuable information. Since small
observer motions can have large effects on the optic flow
field, it is advisable to extract the egomotion parameters
from the optic flow field itself. This, however, is non-trivial
and an active topic of research.

The field has matured a lot over the years and a number
of ‘optimal’ algorithms (unbiased and minimal variance of
the estimates) have appeared [1,2]. The error function of
the optimal problem formulation is however highly nonlin-

ear and contains a large number of local minima [3,4],
which renders these algorithms unreliable and hard to use
in practical applications. The earlier approaches [5–8],
which operate on a linearization of the problem, are no val-
id alternative. Compared to optimal algorithms, they are
extremely sensitive to noise [1,2,9] and the estimates they
provide are unsuitable, even as initializations for the
optimal methods.

As an alternative to the time-consuming process of
repeatedly minimizing with different, random initializations
and selection of the minimum-cost solution, we propose to
regularize the error function. We reformulate the problem
in such a way that the complexity of the error function (the
likelihood that algorithms end up in local minima) is con-
trolled by a single parameter. We propose a reweighting
scheme that gradually increases the problem complexity
during the minimization, until the optimal problem formu-
lation is obtained. We demonstrate, both in simulation and
on real data, that the proposed method retains the accuracy
of optimal algorithms, but is much less sensitive to local
minima. On the extensive set of data investigated, these
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improvements come at the cost of less than a doubling in
computation time compared to previous optimal
algorithms.

2. Problem statement

Under a static environment assumption, the motion of
all points in space, relative to a coordinate system centered
in the nodal point of the observer’s eye, is determined by
the translational velocity, t = (tx, ty, tz)

T, and rotational
velocity, x = (xx,xy,xz)

T, of the moving observer. The
3D velocity, v = (vx,vy,vz)

T, of a point in space,
x = (x,y,z)T, is then [10]

v ¼ �t� x� x: ð1Þ
Under perspective projection and assuming, without loss of
generality, a focal length equal to unity, these 3D motion
vectors are transformed into a two dimensional velocity
or optic flow field. At feature location x = (x,y, 1)T, the ob-
served flow u(x) = (ux,uy)T equals

uðxÞ ¼ dðxÞAðxÞtþ BðxÞxþ nðxÞ; ð2Þ
where

AðxÞ ¼
�1 0 x

0 �1 y

� �
; ð3Þ

BðxÞ ¼ xy �1� x2 y

1þ y2 �xy �x

� �
: ð4Þ

The observed flow consists of three parts: a component due
to the observer’s translation (which also depends on the in-
verse depth d(x) = 1/z), a component due to the observer’s
rotation, and n(x) = (nx,ny)T, which is assumed to be inde-
pendently and identically distributed zero mean Gaussian
noise. These different components are illustrated in
Fig. 1. Also indicated is s (x, t, 1), a unit length vector
orthogonal to the translational component of the flow:

sðx; t; 1Þ ¼ 1

kAðxÞtk ð½AðxÞt�y ;�½AðxÞt�xÞ
T
; ð5Þ

where [p]x and [p]y refer to the x- and y-components of the
vector p respectively. The meaning of the third parameter
(equal to unity in Eq. (5)) is explained in Section 4. When
depth is eliminated from Eq. (2), the well-known bilinear
constraint [11] on translation and rotation is obtained at
each location x

kAðxÞtks ðx; t; 1ÞTðuðxÞ � BðxÞxÞ ¼ 0: ð6Þ
This particular notation is chosen since it highlights that
the constraint is weighted by iA(x)ti. This weight term ren-
ders the constraints much simpler algebraically but, in the
absence of prior knowledge, it is incorrect to weight the dif-
ferent constraints unequally. Instead, the parameters ð̂t; x̂Þ
should be estimated using the unweighted constraints [2]

ð̂t; x̂Þ ¼ argmin
t;x

X
x

½sðx; t; 1ÞTðuðxÞ � BðxÞxÞ�2: ð7Þ

These constraints represent the normalized, orthogonal
deviations from the epipolar lines, and the estimates ob-
tained from Eq. (7) minimize the least-squares image-
reprojection error [4]. Since algorithms that operate on this
error function obtain the most accurate parameter esti-
mates, they are commonly referred to as ‘optimal’ [1,2].

3. Previous algorithms

A wide variety of egomotion-estimation methods have
been proposed in the past. An important distinction can
be made between the earlier approaches, which suffer from
biased and/or widely varying estimates, and the more
recent optimal algorithms.

3.1. Non-optimal algorithms

One of the first egomotion algorithms has been intro-
duced by Bruss and Horn [11] and consists of a straightfor-
ward minimization of the bilinear constraints (Eq. (6))
using nonlinear optimization techniques. Heeger and
Jepson (H&J) [5] have proposed a method to compute
the heading (normalized translation) without iterative
numerical optimization. Their linear subspace method is
based on the construction of a set of constraint vectors that
are independent of camera rotation. Another linear
algorithm has been recently proposed by Ma et al. [6]
and is conceptually similar to methods that operate on
the discrete epipolar constraint. The heading estimates
computed with this algorithm have been shown to be
identical to those obtained with H&J but the rotation
estimates are better.

The heading estimates obtained with the aforemen-
tioned algorithms are all systematically biased. Different
bias correction procedures can be found in the literature.
Kanatani [7] has introduced a method that subtracts
an estimate of the bias from the solution. A second
correction procedure has been introduced more recently
by Maclean (MAC) [8] as an adaptation to H&J. Contrary
to Kanatani’s method, this procedure does not require an
estimate of the noise variance.

3.2. Optimal algorithms

An optimal, nonlinear algorithm has been introduced by
Chiuso et al. (CHI) [1]. This algorithm involves a sequence
of fixed-point iterations where each part of the sequenceFig. 1. Optic flow components.
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requires solving a linear least-squares problem. Chiuso
et al. have proposed iterating between estimates of t and
{d(x),x}. Since a spherical projection model has been used
in their formulation and the other algorithms assume a tra-
ditional pin-hole model, we have modified the formulation
and implemented the algorithm as follows. Starting from
an initial heading estimate t(1), a rotation estimate x(1) is
obtained as the linear least-squares solution to Eq. (7).
Using both estimates, the least-squares relative inverse
depth estimates are obtained at each location x as

dð1ÞðxÞ ¼ ðuðxÞ � BðxÞxð1ÞÞTAðxÞtð1Þ

kAðxÞtð1Þk2
; ð8Þ

Next, the estimates {d (1)(x),x(1)} are used to compute a
new translation estimate t(2) as the linear least-squares
solution to the system of Eq. (2). After normalization,
the sequence is repeated until the estimates converge. The
iterations are stopped when the magnitude of the transla-
tion update, iDti, drops below a certain tolerance level �,
which is equal to 10�13 in all our simulations.

Zhang and Tomasi (Z&T) [2] have introduced a second
optimal algorithm. By exploiting the separability of the
parameters, a very fast algorithm is obtained that performs
Gauss–Newton updates in t. The relative inverse depth esti-
mates d (i)(x) are computed in the same way as CHI (Eq.
(8)) but the heading and rotation estimates are updated as

ðDtðiþ1Þ;xðiþ1ÞÞ ¼ argmin
Dt;x

X
x

½sðx; tðiÞ; 1ÞTðuðxÞ

� dðiÞðxÞAðxÞDt� BðxÞxÞ�2: ð9Þ

Since t and d(x) appear as a product in Eq. (2), their abso-
lute magnitudes cannot be determined. To remove this
ambiguity, the translation update is constrained to be
orthogonal to the current estimate: (t(i))TDt(i+1) = 0. From
Eq. (9), only the translation update is used:

tðiþ1Þ ¼ tðiÞ þ Dtðiþ1Þ; ð10Þ
the rotation estimate is recomputed as the least-squares solu-
tion to Eq. (7) (with fixed t(i+1)). This way, more accurate esti-
mates are obtained. The translation estimate is normalized
to unit length only after the algorithm has converged.

4. Proposed method

As mentioned in the introduction, the optimal algo-
rithms suffer heavily from local minima. These minima
are due to singularities in the unweighted error function
that arise from the normalization of the bilinear constraints
(Eq. (6)) by iA(x)ti. As a consequence, a singularity exists
for each feature where t � (x,y, 1)T. Under certain condi-
tions, which are not uncommon in real-world optic flow
fields, these singularities interact and influence larger
regions of heading space [3,4]. Optimal algorithms initial-
ized with a heading estimate in these regions are then likely
to get trapped in a non-optimal local minimum. The
weighted (bilinear) constraints on the other hand do not

suffer from these singularities and consequently fewer local
minima exist. Only minima due to the so-called bas-relief
ambiguity persist (for details, see [1,3]) and these are fewer
in number (typically two). However, since the different fea-
tures are incorrectly weighted, algorithms operating on this
error function are not optimal.

We propose a novel method that arrives at optimal esti-
mates by gradually ‘unweighting’ the bilinear constraints
until the unweighted error function is obtained. The
method is illustrated for Z&T but can be applied to other
optimal algorithms as well. The relative inverse depth esti-
mates are again computed using Eq. (8) but the heading
and rotation updates now equal

ðDtðiþ1Þ;xðiþ1ÞÞ ¼ argmin
Dt;x

X
x

½sðx; tðiÞ; qðiÞÞTðuðxÞ

� dðiÞðxÞAðxÞDt� BðxÞxÞ�2; ð11Þ

where

sðx; t; qÞ ¼ 1

kAðxÞtkq ð½AðxÞt�y ;�½AðxÞt�xÞ
T
; ð12Þ

Note that the constraint weighting now depends on the
value of q, which we define as the regularization parameter.
When q equals zero, Eq. (11) minimizes the weighted (bilin-
ear) constraints and few local minima will be encountered.
However, when q equals unity, the unweighted error
function is minimized (Z&T) and local minima are plenti-
ful. The novelty of our method consists of a gradual
increase of q (and hence of the complexity of the associated
error function) from zero to unity during the Gauss–New-
ton iterations. Different update schemes are possible, but
we use the following in all our experiments. At iteration
i, the regularization parameter is updated as follows:

qðiÞ ¼ min 1; qði�1Þ þ k
log10 kDtðiÞk

log10�

� �þ !
; ð13Þ

where [x]+ = max(x, 0) and � equals 10�13 (note that
iDti � � at convergence). The parameter k, the adaptation
parameter, determines the adaptation speed and its value
is set to 1/4. The choice of this parameter is discussed fur-
ther in Section 5.4. Since q is non-decreasing and upper-
bounded, the scheme is guaranteed to converge. In the
remainder, we refer to the proposed regularized algorithm
(the adaptation scheme from Eq. (13) applied to the head-
ing and rotation updates from Z&T) as REG. Some typical
convergence traces for both Z&T (dotted line) and REG
(dashed line) are shown in Figs. 2(A) and (B), with the evo-
lution of q overlaid (solid line). The traces of Fig. 2(A)
have been obtained on a typical problem from Section
5.1 whereas those of Fig. 2(B) have resulted from solving
a difficult problem, involving very noisy optic flow. The
simple update scheme from Eq. (13) smoothly increases
the regularization parameter. If the update magnitude ex-
ceeds unity, q is left unchanged. Otherwise, q is updated
proportionally to the size of the update; the smaller the up-
date (indicating that a solution is close by), the stronger q is
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increased. This has a stabilizing effect on the algorithm, as
exemplified by the traces of q and REG in Fig. 2(B) around
iteration 20. As a result of the increased update magnitude
at that point, q is increased more slowly. This in turn sta-
bilizes the algorithm, as can be seen from the subsequent
drop in the update magnitude. This increased stability war-
rants the slightly increased complexity of the adaptation
scheme as compared to one that simply increases q with
a fixed value at each iteration. The regularization parame-
ter is increased until its maximum value of unity is reached.
From that point on, until convergence, q is kept fixed and
the updates are identical to those of Z&T. The convergence
traces from Fig. 2 show that Z&T converges quadratically
and that the regularized algorithm converges somewhat
slower but still very smoothly. In the experiments per-
formed here, the proposed method requires less than twice
the number of iterations needed by Z&T (see below). Since
updating q creates little overhead, one iteration takes an
equal amount of time in both algorithms.

5. Experiments

In this section, the proposed method is extensively com-
pared to some of the algorithms discussed in Section 3.
First, in Section 5.1, the algorithms are compared in terms
of accuracy of the parameter estimates. This evaluation
involves synthetic data only and is applied to both optimal
and non-optimal algorithms. Next, in Section 5.2, the pro-
posed method’s superior robustness to local minima as
compared to other optimal algorithms is demonstrated.
For this purpose, a synthetic problem is specifically
designed so that the unweighted error function is highly
complex. In Section 5.3 the proposed method’s robustness
is also demonstrated on the well-known real-world NASA-
sequence [12]. Finally, Section 5.4 discusses the choice of
the adaptation parameter k.

5.1. Bias/variance

We compare H&J, MAC, CHI and Z&T to the pro-
posed method REG in terms of the bias and variance of
the heading estimates. Also included is an algorithm

identical to REG but with the regularization parameter q
fixed to zero. This algorithm (BIL) effectively minimizes
the weighted (bilinear) constraints. We use implementa-
tions provided by Tian et al. [9] for H&J, our own imple-
mentations for MAC, BIL, CHI and REG and an
implementation provided by Dr. Tong Zhang for Z&T.
We have not included the algorithms by Ma et al. [6] (the
heading estimates of which are identical to H&J’s) and
by Kanatani [7] (which fails to provide unbiased estimates
consistently throughout this dataset [2]). The rotation esti-
mates are not analyzed since the bias is entirely due to
heading estimation and the heading estimates can be visu-
alized and interpreted more easily. We examine the same
configuration of translation and rotation as Zhang and
Tomasi [2], namely a translation and rotation direction
equal to (4,�3,5)T and (�1,2,0.50)T respectively. The rota-
tion rate is fixed to 0.23�/frame and the translational mag-
nitude is chosen so that the speeds of the translational and
rotational flow components are identical in the center of
the random depth cloud. In each experiment, 100 feature
locations are randomly chosen and uniformly distributed
over the image. The focal length is set to unity. The depth
of the features is uniformly distributed between 1 and 4
units of focal length. Independently and identically distrib-
uted zero mean Gaussian noise is added to the flow vectors.
The signal-to-noise ratio (SNR), defined as: (E{iui2}/
E{ini2})1/2, is varied between 10 and 30. For each algo-
rithm, 100 trials are performed, in which the feature loca-
tions, depth and noise are randomized. For the nonlinear
algorithms (BIL, CHI, Z&T and REG), 15 heading initial-
izations, evenly spread on the unit sphere, are used and the
solution with the smallest residual error is retained.

Table 1 contains the heading estimates obtained with all
algorithms, for a SNR equal to 10. The field of view (FOV)
is equal to 50� and 150� in the top and bottom rows respec-
tively. The estimates are mapped to the upper hemisphere
and projected onto a circle. The dashed cross marks the
true heading. Example flow fields for the two conditions
are shown in Fig. 3. For each algorithm and noise level,
the bias, defined as the angular difference between the mean
heading estimate and the actual heading, and a 95% confi-
dence cone (measured in degrees), closely related to the
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Fig. 2. Convergence traces (left y-axes) for Z&T (dotted lines) and REG (dashed lines) together with the evolution of the regularization parameter q (solid
line, right y-axes) for two different problems; (A) a typical problem and (B) a problem with very noisy optic flow.
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variance of the estimates, are computed using techniques
from the domain of spherical statistics [13]. Contrary to
the bias/variance measures used in previous studies
[1,2,9], this more sophisticated analysis clearly brings out
the bias in the estimates obtained with H&J. Table 2 con-
tains the variance measure for all algorithms, SNRs and
FOVs. The value is underlined in the table if the mean
heading estimate is contained within the confidence cone
(unbiased). With FOV equal to 50�, this is the case for
all algorithms and noise levels except, as expected, for
H&J. We also see that the variance in the estimates is much

smaller for the nonlinear algorithms than for the linear
ones, as observed in other studies [1,2,9]. Note that the var-
iance for CHI, Z&T and REG is nearly identical for all
configurations. However, when the constraints are weight-
ed (BIL) the variance is about 10% larger on all occasions,
which clearly demonstrates the non-optimality of this
approach. Table 3 contains the median number of itera-
tions required by the nonlinear algorithms to reach conver-
gence for the different configurations of Table 2. The
median is used since CHI and Z&T are less stable than
REG and sometimes fail to converge within the maximum
number of iterations (1000) allowed in our experiments.
Consequently, the mean would give misleading results in
favor of the proposed method. REG needs less than twice
the number of iterations required by Z&T to reach conver-
gence. The alternation steps are probably responsible for
the slow convergence of CHI. Since alternation methods
perform coordinate-descent, flatlining often occurs in val-
leys of the error surface [14]. The Gauss–Newton algorithm
on the contrary, is much faster since translation and rota-
tion are updated simultaneously.

In summary, REG performs equally well as the optimal
algorithms CHI and Z&T in terms of unbiasedness and
variance of the estimates and requires less than twice the
number of iterations to reach convergence as compared
to Z&T.

Table 1
Heading estimates obtained with six different algorithms on 100 random trials

FOV H&J MAC BIL CHI Z&T REG

50�

150�

The FOV is equal to 50� and 150� in the top and bottom rows respectively (the SNR is equal to 10 for both). Example flow fields for these two conditions
are shown in Fig. 3.

Fig. 3. Example noisy flow fields (magnified 10 times) corresponding to a
FOV of 50� (left) and 150� (right). The SNR is equal to 10 in both cases.

Table 2
Radii of the 95% confidence cones (in degrees) of the heading estimates
obtained with all six algorithms tested for different FOVs and SNRs

FOV SNR Non-optimal Optimal

H&J MAC BIL CHI Z&T REG

50� 30 0.29 0.28 0.25 0.23 0.23 0.23
20 0.45 0.43 0.38 0.35 0.35 0.35
10 0.86 0.97 0.77 0.74 0.74 0.74

150� 30 1.25 1.05 0.45 0.41 0.41 0.41
20 2.57 1.65 0.69 0.62 0.62 0.62
10 6.10 4.13 2.25 2.02 2.03 2.02

The value is underlined if the mean heading estimate falls within the
confidence cone.

Table 3
Median number of iterations required by the nonlinear algorithms to
reach convergence in the simulations of Table 2

FOV SNR BIL CHI Z&T REG

50� 30 13 365 16 29
20 15 368 19 32
10 20 391 30 41

150� 30 11 118 16 33
20 13 132 19 36
10 16 168 26 45
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5.2. Local minima

In the previous section we have shown that the accuracy
of the proposed method is similar to that of optimal algo-
rithms. Here, we demonstrate the greatly increased robust-
ness to local minima that is achieved by gradually
increasing the regularization parameter q. The error sur-
face associated with the optimal egomotion problem is
known to become flatter in a situation of lateral translation
and the number of local minima increases when the feature
locations are clustered together, even in the noiseless case
[3]. Using this information we have constructed a particu-
larly difficult scenario that enables us to investigate the
robustness to local minima of the optimal algorithms:
CHI, Z&T and REG. The egomotion consists of a transla-
tion and rotation direction equal to (1,0,0.1)T and (0, 1,0)T

respectively. The depth, translation and rotation magni-
tudes are chosen as in Section 5.1 and the FOV is set to
100�. A total of 500 features are used but, contrary to Sec-
tion 5.1, they are not uniformly distributed in the image.
Instead, their locations are drawn from 20 spatially distinct
clusters, the centers of which are uniformly distributed over
the image. The cluster centers are indicated with circles in
the rightmost figure of Fig. 4. Also shown in this figure is
the (subsampled and scaled) flow field used. No noise
is added to the computed flow vectors. Each algorithm is
run with the same 50,000 heading initializations, randomly
sampled from the unit sphere, and is allowed a maximum
of 1000 iterations to reach convergence. This large number
of initializations allows for a detailed account of the behav-
iors of the algorithms over the entire heading space.

The first three figures of Fig. 4 contain the estimated
headings (black circles) together with the normalized fea-
ture locations x/ixi (black dots). As before, the dashed
cross marks the actual heading. It is apparent from these
figures that both CHI and Z&T suffer from a large number
of local minima, located near clusters of image pixels,
whereas REG does not suffer from this problem at all
and only finds one additional local minimum besides the
global minimum (labeled A in Fig. 4). This second mini-
mum is located near the image center and labeled B in
Fig. 4. This minimum is also found by the other algorithms
and is a consequence of the bas-relief ambiguity. Tech-

niques have been proposed to discriminate between these
two strong minima and to quickly find the other once
one is known [1]. In the remainder, we refer to local mini-
ma different from these dominant minima as undesired
local minima, and to the corresponding heading initializa-
tions as undesired initializations. The fact that all unde-
sired local minima are related to clusters of feature
locations clearly indicates that they are caused by the
singularities in the unweighted error function.

We repeat the experiment for different noise levels and
summarize the results in Table 4: the undesired initializa-
tions (gray dots) are shown in relation to feature locations
(black dots) with the number of undesired initializations
underneath each instance. Besides the optimal algorithms
CHI, Z&T (q = 1), and the proposed method REG, we
also include a number of algorithms with different, fixed,
values of q, namely 0.9, 0.8 and 0 (BIL). Each row in Table
4 corresponds to a different noise level. In general, we
observe that the number of undesired initializations
increases with increasing noise. The fact that noise further
increases the error surface complexity and the likelihood of
convergence into a local minimum has also been observed
by Oliensis [4]. As expected, the locations of these unde-
sired initializations are related to the feature locations. It
is notable that the feature clusters have a rather large spa-
tial extent over which they exert their influence and interac-
tions between clusters are clearly visible. The larger number
of local minima of CHI is due to flatlining [14]. For all
three noise levels, we see that the number of local minima
gradually decreases as q goes to zero. When q equals zero,
no undesired local minima are found on any occasion. This
nicely illustrates how the problem complexity decreases
with decreasing q. From the rightmost column of Table 4
it is clear that the proposed method does not suffer from
undesired local minima at all, no matter the noise level.
The median number of iterations for these simulations
are shown in Table 5. We again see less than a doubling
in computation time for REG as compared to Z&T.

Fig. 5 contains error functions of the noiseless local min-
ima problem discussed in this section for different values of
the regularization parameter q. The error is evaluated over
an area of the image similar to Fig. 4 (rightmost). At each
location (x,y) the error has been obtained by computing

Fig. 4. Small circles in the leftmost figures correspond to heading estimates obtained with the optimal algorithms when initializing with 50,000 distinct
random headings. The global minimum is labeled A and the local minimum due to the bas-relief ambiguity is labeled B. Feature locations are indicated
with small black dots. The rightmost figure contains the noiseless flow field used (subsampled and magnified 10 times). In this figure, the small circles
indicate the feature cluster centers.
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the least-squares rotation estimate (using Eq. (7) with the
current value of q) assuming a candidate heading
t � (x,y, 1)T. It is clear from this figure that the complexity
of the error function smoothly increases with increasing q.

5.3. Real-world data

We repeat the analysis from the previous section on a
real-world image sequence and show that the problem
characteristics are not specific to our engineered data
set. We use the well-known NASA-sequence [12], the cen-
ter frame of which is shown in Fig. 6 (left), and compute
optic flow using a phase-based algorithm [15]. Since the
obtained flow field is very dense (around 50,000 vectors),
we randomly select 500 flow vectors to keep the computa-
tion times reasonable. This subsampled flow field is shown
in Fig. 6 (right). Next, as in Section 5.2, we run the opti-
mal algorithms with 50,000 heading initializations, ran-
domly sampled from the unit sphere, and allow each
algorithm a maximum of 1000 iterations to converge.
As before, two dominant minima are obtained for all
algorithms, one of which is the global optimum (roughly
forward translation). These minima are then used to iden-
tify the undesired local minima and corresponding initial-
izations. The results are shown in Fig. 7 for CHI, Z&T

and REG. Black dots again mark the feature locations
(note the small FOV) and gray dots the undesired initial-
izations. The results are in accordance with those
obtained on the synthetic datasets: REG clearly shows a
superior robustness to local minima. The number of unde-
sired initializations is 10,856 for CHI, 5018 for Z&T and
only 4 for REG. The median number of iterations is 1000
for CHI, 48 for Z&T and 58 for REG. Although CHI
failed to converge in more than half the trials on this very
hard problem, the two dominant minima were clearly dis-
cernible. The results are consistent with those of the pre-
vious section: the reweighting scheme offers a largely
increased robustness to local minima at a relatively small
computational cost.

5.4. Choice of adaptation parameter

The parameter k in the reweighting scheme (Eq. (13))
controls the speed at which the regularization parameter
q increases during the Gauss–Newton iterations. The larger
its value, the sooner q reaches unity and, consequently, the
sooner the algorithm starts minimizing the unweighted
error function. To examine the influence of the adaptation
parameter on the proposed method, we ran the algorithm
on the local minima problem of Section 5.2 for different
values of k. The SNR is fixed and equal to five on all
occasions. The results are shown in Fig. 8.

Fig. 8(A) shows the number of undesired initializations
as a function of k. As expected, this number increases with
increasing k. In the limit (k =1, which implies switching
to Z&T after one iteration) 5008 undesired initializations
are obtained. This is still smaller than the 7329 obtained
by Z&T (see Table 4) since in the proposed reweighting
scheme, the first iteration is always performed using the

Table 5
Median number of iterations to reach convergence in the simulations of
Table 4

SNR CHI Z&T q = 0.9 q = 0.8 BIL REG

1 138 7 7 7 7 7
10 144 17 17 17 17 30
5 157 32 32 32 30 45

Table 4
Undesired initializations (gray dots) in relation to feature locations (black dots) for a number of different algorithms

SNR CHI Z&T q = 0.9 q = 0.8 BIL REG

1

10

5

The results are shown for three noise levels. The number of undesired initializations is shown underneath each instance.

K. Pauwels, M.M. Van Hulle / Computer Vision and Image Understanding 104 (2006) 77–86 83

196



Fig. 5. Error functions of the noiseless local minima problem of Fig. 4 for different values of the regularization parameter q. The complexity of the error
surface smoothly increases with increasing q.

Fig. 6. The center frame of the well-known NASA-sequence (left) and 500 flow vectors (scaled) randomly selected from the complete flow field extracted
from this sequence (right).
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weighted (bilinear) constraints (q = 0). Fig. 8(B) contains
the median number of iterations required, as a function
of k. Since the reweighting process slows down when k is
decreased, the number of iterations increases with decreas-
ing k. However, even at the smallest value of k shown here
(1/8), the number of iterations is still less than twice the
number required by Z&T.

We can summarize that, as long as the adaptation
parameter k is between zero and one, the method is rela-
tively insensitive to its value. In this range, a reasonable
tradeoff between robustness to local minima and computa-
tional requirements is obtained.

6. Discussion

We have presented a novel method that reduces the sen-
sitivity to local minima of optimal egomotion-estimation
algorithms by gradually increasing the problem complexity
during the optimization. We have demonstrated that the
local minima encountered by these algorithms are related
to the feature (or feature cluster) locations and, as such,
their values can be arbitrary and unrelated to the true solu-
tion. This makes these algorithms hard to use in practical
applications.

As a remedy, it has been previously suggested to initial-
ize the optimal algorithms with estimates obtained by
simplified (linear) algorithms. As shown in Section 5.1
however, noise has a detrimental effect on the accuracy of
linear algorithms. We have nevertheless examined this

alternative and verified that REG still outperforms Z&T
in terms of robustness to local minima, even when the latter
is initialized with solutions obtained by BIL (results not
shown). Since the variance of all linear algorithms tested
is larger than BIL, it is unlikely that their estimates will
prove better initializations. An alternative way to deal with
local minima is to perform multiple runs with different ran-
dom initializations and retain the solution with the smallest
residual. To achieve in this way the same robustness as the
proposed method, a large number of runs are necessary
and since our method uses fewer than twice the number
of iterations required by the fastest optimal algorithm
(Z&T), it is computationally more efficient.

Finally, we have shown that the proposed method
behaves very similar to BIL in terms of the number of local
minima found (typically two). By exploiting the relation-
ship between these minima, the global minimum can thus
be found with high certainty in only one or two runs of
our method.
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Abstract

A novel stabilization method is introduced that enables the extraction of op-
tic flow from short unstable sequences. Contrary to traditional stabilization
techniques that use approximative global motion models to estimate the full
camera motion, our method estimates the unstable component of the camera
motion only. This allows for the use of even simpler global motion models,
while at the same time extending the validity to more diverse environments,
such as close scenes containing independently moving objects. The unstable
component of the camera motion is derived for each frame by maximizing the
temporal constancy of the local velocities over the entire short sequence. The
method is embedded within a phase-based optic flow algorithm and tested on
complex real-world sequences. The optic flow obtained using our technique
is much denser than that extracted directly from the original sequence. The
proposed method also compares favorably to a more traditional stabilization
technique.

1 Introduction

Visual motion is a powerful sensory cue used by humans for such diverse purposes as
self-motion estimation, extracting the three dimensional (3D) structure of the environ-
ment and detecting independently moving objects. This information is crucial for naviga-
tion, obstacle avoidance,etc. Due to the ill-posedness of the problem and external noise
influences, extracting the local velocity or optic flow field from an image sequence is dif-
ficult. The quality can be greatly increased by exploiting some of the redundancy present
in a short (e.g.five frames) image sequence. By assuming that the local velocities remain
constant over this short sequence, more stable numerical differentiation techniques can
be used, temporal aliasing can be reduced, and more reliable confidence measures can
be computed [3, 9]. If both observer and moving objects undergo smooth motion, this
velocity constancy assumption is satisfied in the majority of the scene (except in regions
that become occluded during the sequence). In realistic situations however, shocks and

∗K.P. and M.M.V.H. are supported by the Belgian Fund for Scientific Research – Flanders (G.0248.03,
G.0234.04), the Flemish Regional Ministry of Education (Belgium) (GOA 2000/11), the Belgian Science Policy
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vibrations of the vehicle or robot on which the camera is mounted result (predominantly)
in fast rotational camera movements that induce large local motions over very short time
spans [5]. As a result, the velocity constancy assumption is no longer valid and optic flow
algorithms fail to extract meaningful motion vectors.

A typical solution is to stabilize the image sequence first. Since the unstable com-
ponent of the camera motion is combined with the component that results from the self-
motion, traditional stabilization techniques estimate the full camera motion and smooth it
afterwards [13]. This camera motion can be decomposed into a 3D translation and a 3D
rotation. The local motion field resulting from camera translation depends on the scene
structure whereas that resulting from the camera rotation does not. Since both are com-
bined, estimating camera motion in general situations is a nontrivial problem and most
algorithms developed for this purpose work well in specific domains only [15]. Some sta-
bilization techniques usea priori knowledge (presence of the horizon, lane markings, the
road vanishing point,etc.) to simplify this estimation [5, 12]. This limits their applicabil-
ity to situations where the required features can be reliably obtained. Most stabilization
methods rely on simplified motion models instead (translation; translation, rotation and
scaling; affine; quadratic; projective) and only approximate the camera motion. These
models are only valid in limited scenarios (e.g.aerial imagery) and when they are used in
more complex situations (e.g.driving a vehicle downtown or during vehicle turns) the sta-
bilization algorithm typically tracks a dominant component of the background for which
the model is sufficiently rich (e.g. the ground plane). Due to changes in the environment
however, this dominant component changes also and abrupt changes in the estimated cam-
era motion can result. For this reason, current image stabilization techniques fail when an
image contains close scenes [14].

We propose a method that allows estimation of the unstable component of the camera
motion only. Since this unstable component consists primarily of 3D rotations, a simple
global motion model is sufficient for its estimation. Instead ofassuminglocal velocity
constancy, weenforceit and in this way exploit the fact that stable motion should result
in velocity constancy locally in the majority of the scene, irrespective of the complexity
of the camera motion, scene, and moving objects. By tightly integrating the stabiliza-
tion with the optic flow computation, the deviations from local velocity constancy can be
measured explicitly and used to estimate a global 3D rotation for each frame of the short
sequence. After correcting for these rotations, the local velocity constancy and the qual-
ity of the optic flow increase greatly. Since we use only 3D rotations in the correction,
the component of the flow that results from camera translation is left untouched. Conse-
quently, the flow vectors can still be used in a variety of tasks (egomotion, structure from
motion, independent motion,etc.can still be extracted).

The proposed stabilization technique is explained in Section 2 and extensively eval-
uated on two real-world sequences in Section 3. In this evaluation, the algorithm is also
compared to a traditional stabilization method. Finally, concluding remarks are given in
Section 4.

2 Image Sequence Stabilization

Our technique is embedded in an existing phase-based optic flow algorithm that we briefly
present in Section 2.1. The chosen algorithm is particularly suitable for stabilization
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since it relies on spatial filtering only. The proposed stabilization method is explained in
Section 2.2 and a multiscale extension of the method that allows for large instabilities is
discussed in Section 2.3.

2.1 Phase-based Optic Flow using Spatial Filtering

Fleet and Jepson [7] were the first to propose a phase-based technique for the estimation
of optic flow and showed that the temporal evolution of contours of constant phase can
yield a good approximation to the motion field. The proposed stabilization method centers
around the phase-based optic flow algorithm by Gautama and Van Hulle [9]. The method
distinguishes itself from [7] by using spatial instead of spatiotemporal filters to compute
the phase, and by considering strictly local information when integrating component ve-
locities (normal flow) into full velocities (optic flow). In an extensive comparison, similar
to that from [3], the algorithm has been shown to rank among the best ones [9].

For a specific orientation, the spatial phase at pixel locationx = (x,y) is extracted
using 2D complex Gabor filters:

G(x, f) = e−‖x‖
2/σ2

ei x·f , (1)

with peak frequencyf = ( fx, fy). We refer to [9] for a discussion of the filterbank. The
response to this oriented filter can be written as:

R(x) = ρ(x)ei φ(x) = C(x)+ iS(x) . (2)

Hereρ(x) =
√

C(x)2 +S(x)2 andφ(x) = arctan[S(x)/C(x)] are the amplitude and phase
components, andC(x) andS(x) the responses of the quadrature filter pair. For every ori-
entationθ , the temporal phase gradient,φt,θ (x), is computed from the temporal sequence
of the spatial phase at that location,φθ (x, t), by performing a linear least-squares fit to the
model (see also Fig. 1):

φθ (x, t) = cθ (x)+ φt,θ (x)t . (3)

A simple unwrapping technique is used to cope with the periodicity of the phase. Next,
for each orientationθ a component velocity is computed directly fromφt,θ (x):

vc,θ (x) =
−φt,θ (x)

2π( f 2
x,θ + f 2

y,θ )
( fx,θ , fy,θ ) . (4)

Note that the spatial phase gradient is substituted by the radial frequency vector. The
reliability of each component velocity is measured by the mean squared error (MSE) of
the linear fit:∑t

(
∆φθ (x, t)

)2
/n, wheren is the number of frames and:

∆φθ (x, t) =
(
cθ (x)+ φt,θ (x)t

)−φθ (x, t) . (5)

Finally, provided a minimal number of reliable component velocities are obtained (thresh-
old on the MSE), an estimate of the full velocity is computed for each pixel by integrating
the valid component velocities at that pixel only:

v∗(x) = argmin
v(x)

∑
θ∈O(x)

(
‖vc,θ (x)‖−v(x)T vc,θ (x)

‖vc,θ (x)‖
)2

, (6)

whereO(x) is the set of orientations at which valid component velocities have been ob-
tained for pixelx.
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Figure 1: Temporal phase gradient linearization. For each orientation and pixel, the tem-
poral phase gradientφt(x) is computed by fitting a line through the spatial phasesφ(x, t)
computed at each frame. The proposed stabilization method aims at minimizing the devi-
ations∆φ(x, t) from this estimated line by applying a global 3D stabilizing rotation∆ω(t)
to each frame.

Figure 2: Stabilization overview. (A) A sliding window (consisting of three frames in
the figure) is used to compute optic flow for the central framet. (B) The spatial phase
φθ is computed for each pixel, orientationθ (two orientations in the figure) and frame
t. The temporal phase gradientφt,θ is obtained for each pixel and orientation by fitting a
linear model to the temporal sequence of the spatial phase. (C) The ‘unstable’ component
velocities∆vc,θ are obtained for each frame and orientation from the errors between the
spatial phases and this linear model. (D) A 3D stabilizing rotation∆ω(t) can be estimated
for each framet by integrating the ‘unstable’ component velocities over all pixels and
orientations using a linear model. (E) These stabilizing rotations define a stabilizing full
velocity field for each frame, which can be used to warp the images (or the Gabor outputs
or the phases) and to obtain a stable sequence.
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2.2 Temporal Phase Gradient Linearization

As mentioned in the introduction, the proposed method searches for a global 3D cam-
era rotation for each frame of a short sequence that, when applied to these frames (by
warping), maximizes the temporal constancy of the local velocities over the entire short
sequence.

The basic idea of the method is illustrated in Fig. 1. Shown in this figure is the
temporal sequence of spatial phase (after phase unwrapping) obtained at a certain pixel
and for a certain orientation. A line is estimated through these points and the temporal
phase gradientφt(x) is obtained. Local velocity constancy is typically reflected in a linear
evolution of the phase over time and in small errors in the line-fitting. This is clearly not
the case here. The goal now is to warp the frames in such a way that the deviations from
this line (small arrows) are minimized. The desired changes are computed for each pixel,
orientation and frame using Eq. (5). Note that, similar to the temporal phase gradient
(Eq. 4), this desired change in the spatial phase can also be interpreted as and transformed
into a component velocity:

∆vc,θ (x, t) =
−∆φθ (x, t)

2π( f 2
x,θ + f 2

y,θ )
( fx,θ , fy,θ ) . (7)

This component velocity now reflects the local effect (orthogonal to the filter orientation)
of the unstable component of the camera motion. Since we know that this component is
predominantly 3D rotational [5], its estimation is straightforward. The instantaneous full
velocity at pixel locationx that results from a 3D camera rotation,ω = (rx, ry, rz)T, with
rp the angular velocity around thep-axis, can be well-approximated by [1]:

v(x) = B(x)ω , (8)

where

B(x) =
[

xy/ f − f −x2/ f y
f +y2/ f −xy/ f −x

]
, (9)

and f the focal length of the camera. For component velocities we have:

‖vc,θ (x)‖=
(
B(x)ω

)T vc,θ (x)
‖vc,θ (x)‖ . (10)

On the basis of the unstable component velocities,∆vc,θ (x, t), computed at each pixel,
frame and orientation we can now estimate, for each frame, the required stabilizing rota-
tion, ∆ω(t), by solving the following linear least-squares problem:

∆ω∗(t) = argmin
∆ω(t)

∑
x,θ

[
‖∆vc,θ (x, t)‖− (

B(x)∆ω(t)
)T ∆vc,θ (x, t)
‖∆vc,θ (x, t)‖

]2

. (11)

Once the stabilizing rotations are found, they are used to correct the sequence and the
optic flow is recomputed. The corrections can be done by warping the images or, more
efficiently, the Gabor filter outputs (Eq. 2). An overview of the complete stabilization
procedure is provided in Figure 2.
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Figure 3: Multiscale stabilization.

Note that not all deviations from linearity in Fig. 1 result from instabilities. Other dis-
turbing factors are image noise, phase singularities, motions exceeding the filter range,etc.
These latter errors are however much weaker correlated compared to those resulting from
the instabilities. Due to the sheer volume of available measurements, robust and precise
rotation estimates can still be obtained.

An important limitation of the method discussed in this section is that the magnitude
of the effect of the unstable camera motion component has to be within the range of the
Gabor filters. To extend this range and to enable the method to also detect and correct
large rotational shocks, the stabilization technique can be embedded in a coarse-to-fine
multiscale implementation of the optic flow algorithm. This is the subject of the next
section.

2.3 Multiscale Extension

Due to phase periodicity, phase-based techniques can only detect shifts that do not exceed
half the filter wavelength. To extend this range, a coarse-to-fine control strategy can be
used [8]. An efficient solution involves the use of an image pyramid, in which the image
resolution is halved at each level. By applying the original filters to each level of the
pyramid, the detectable range of shifts is doubled at each level. The control strategy starts
at the lowest resolution and uses optic flow estimates obtained there to warp the images
at the next higher resolution so that the estimated motion is removed [4]. The residual
motion is then within the range of the filters applied at that level.

The optic flow algorithm we use is particularly suitable for this warping strategy since
it uses strictly local information. In a similar fashion as in Section 2.2, we do not warp
the images themselves but rather the filter outputs. In our implementation, only optic
flow vectors that can be computed reliably at the highest resolution are retained. In other
words, if the refinement made at the highest resolution to a lower resolution estimate (that
was reliable at that lower resolution) is unreliable, the flow vector is discarded and not
included in the density counts of the next section. In this way, overly smooth flow fields
are avoided.

Figure 3 contains a schematic overview of the coarse-to-fine control strategy used in
the proposed stabilization technique. The procedure starts at the lowest resolution. The
spatial phaseφ is computed at this level and the stabilizing rotations∆ω are estimated
as explained in Section 2.2. These rotations are then used to warp the filter outputs and
compute the stable phaseφ s and stable full velocitiesv. The stabilizing rotations and
full velocities are then transformed (multiplied by two) to the next scale and the filter

6
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single scale multiscale

seq ORG TRA PGL ORG TRA PGL

city 31.5 37.1 40.1 37.9 44.8 52.2
mway 22.6 26.2 25.8 32.0 32.8 37.1

Table 1: Average flow field density (in percent).

outputs at that level are warped to compensate for the effects of these motions. Next, the
stabilization procedure is applied to this motion-compensated phaseφw and a refinement
of the stabilizing rotations is obtained. The filter outputs are then rewarped to incorporate
this refinementφw,s and the residual full velocities are computed. Finally, the updated
rotations and full velocities are propagated to the next level and the procedure is repeated
until the original resolution is obtained.

3 Results

We evaluate the proposed Phase Gradient Linearization method (PGL) in terms of the
optic flow density (the percentage of reliable flow vectors) obtained before and after sta-
bilization. A full velocity is considered reliable if the MSE of the linear fit (Eq. 3) does
not exceed 0.01 for at least five (out of 11) of the component velocities used in its estima-
tion. Five frames are used in the computation and three scales are used in the multiscale
implementation of the algorithm. We also evaluate the optic flow density after stabiliza-
tion with a popular alternative stabilization technique. This technique (TRA) estimates a
2D translation globally by matching the images as a whole [2]. We use the normalized
cross correlation measure for reliable matching. Subpixel accuracy is obtained by refin-
ing this estimate with a gradient-based technique [10]. Central differences are used to
estimate the spatial derivatives. This combined procedure enables high-precision image
registration. A linearization procedure similar to that shown in Fig. 1 is used to correct the
individual 2D translation estimates and to render the estimated camera motion constant
over the short sequence (a unique transformation is obtained by fixing the central frame).

Both techniques are applied to two complex real-world driving sequences, recorded in
different environments. The sequences have been recorded with a camera rigidly installed
behind the front shield of a moving car1. The first one,city, contains close scenes and
relatively small vehicle velocities whereas the second sequence,mway, involves larger
vehicle speeds and also larger destabilizing motions. Moving objects are present in both
sequences. An example image of each sequence, together with the optic flow computed
for these frames is shown in Fig. 4. It is clear from this figure that the flow computed after
stabilization with PGL looks very similar to that computed without stabilization (ORG),
except for the greatly increased density. This is because the stabilization procedure aver-
ages out the instabilities over the entire short sequence.

The complete sequences each consist of± 450 frames of320×256 pixels, and the
obtained optic flow densities are summarized in Table 1. A two-way ANOVA and Tukey
multiple comparison test [11] have been used to asses the significance of all individual

1Courtesy of Dr. Norbert Kr̈uger, Aalborg University Copenhagen, and HELLA Hueck KG, Lippstadt.
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A B C D E

Figure 4: Example images (A) and flow fields (B–E) obtained on thecity (top row) and
mway(bottom row) sequence without stabilization using (B) single scale and (C) multi-
scale optic flow, and with the proposed stabilization using (D) single scale and (E) multi-
scale optic flow. All flow fields have been subsampled and scaled 10 times.
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Figure 5: Optic flow field density. (A–D) Results obtained without stabilization (black
dots) and after stabilization with the proposed method (solid line) over the entirecity
(left) andmway(right) sequences. The first and second row correspond to the results
obtained with the single and multiscale algorithm respectively. (E,F) Results obtained
with the alternative stabilization method (TRA) on both sequences using the multiscale
implementation.
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pairwise differences in mean density at the joint significance level of 0.05. The mean
density is underlined in the table if all pairwise differences in which the respective algo-
rithm occurs are significant. This analysis is repeated for each combination of sequence
and control strategy (single scale/multiscale). The multiscale strategy improves the den-
sity on all occasions. The TRA stabilization technique significantly improves the density
as compared to the original sequences, but the proposed method achieves far better results
in general and in the multiscale scenario in particular.

Figure 5 shows the improvements obtained with PGL in more detail. In this figure
the optic flow density is shown as a function of frame number for the entire sequences.
In Figs. 5(A–D), the densities obtained without stabilization are shown as black dots and
those obtained after stabilization with PGL as solid lines. We can already see signifi-
cant improvements in the single scale case but the technique fails at certain frames (e.g.
around frame 150) incity and at various locations inmway. The multiscale stabilization
overcomes this problem, which clearly shows that large unstable motions are present here
(the multiscale results without stabilization are as bad as the single scale at these frames).
In the multiscale case, an almost constant density stream of optic flow is obtained over
the entire sequences after stabilization. For completeness, the density obtained with TRA
is shown in Figs. 5(E,F). Due to the prevalence of close scenes incity, the procedure fails
often. Better results are obtained onmway, but the stabilization is still unreliable and the
density is often smaller than that obtained without stabilization.

To make sure that the weaker results of TRA are not from its inability to model rota-
tions around the line of sight, we have repeated the simulations with the proposed method,
but now using a simple 2D translation model in Eq. (11). The results were not significantly
different from those obtained with the full 3D rotation model. This could be either be-
cause instabilities do not result in rotations around the line of sight in these sequences or
because of inaccuracies resulting from rotating (warping) the filter outputs. Since rota-
tions change the orientations, refiltering or a more efficient framework such as steerable
filters [6] may be required to further improve the precision. The latter allows for changes
in orientation without refiltering. This is a subject of further investigations.

4 Conclusion

We have proposed a novel stabilization technique that does not require estimation of the
full camera motion but enables a direct estimation of the unstable component of the cam-
era motion. This is achieved through a maximization of the temporal constancy of the
local velocities. The method is computationally efficient as it involves linear systems and
simple transformations, the result of which can be computed without time-consuming re-
filtering. Although we use a global motion model of similar complexity, we achieve sig-
nificant increases in reliable optic flow density on real-world sequences as compared to a
traditional stabilization technique. It is true that evermore complex global motion models
can be used to more accurately model the camera motion in alternative techniques, but this
will be at the cost of efficiency, stability, and simplicity. Our method on the other hand
is simple and valid in the most general of scenes, those where the distance to the scene is
small, the range of depths within the scene is large, and moving objects are present. By
using only 3D rotations in the stabilization, the information in the optic flow that relates
to the depths of the scene is left undisturbed.
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Abstract. A novel method is introduced for the stabilization of short image sequences. Stabilization is achieved

by means of fixation of the central image region using a variable window size block matching method. When applied

to a sliding temporal window, the stabilization improves the performance of standard optic flow techniques. Due to

the unique choice of fixation as the main stabilization mechanism, the proposed method not only increases the flow

field density but renders certain global structural properties of the flow fields more predictable as well. This in turn

is advantageous for egomotion computation.

1. Introduction

Visual motion is one of the more important sensory

cues that are used by humans to guide behavior or

to navigate a dynamical environment. The instanta-

neous velocity or optic flow field contains a tremen-

dous amount of information related to the self-motion

of the observer, the three dimensional (3D) structure

of the environment, and the presence and motion of

independently moving objects. Extracting this veloc-

ity field from the temporal evolution of image intensity

values is a highly complex and ill-posed problem. In or-

der to obtain unique solutions, a variety of assumptions

have been used to constrain the problem. One important

assumption, adopted by many optic flow algorithms

proposed in the literature, states that the local veloc-

ities remain constant over a short time span (Barron

et al., 1994). If this assumption holds, multiple frames

can be used in the estimation process. This allows for

the application of more stable numerical differentiation

techniques, the reduction of temporal aliasing (Barron

et al., 1994) or the extraction of more reliable confi-

dence measures (Gautama and Van Hulle, 2002). When

both observer and moving objects undergo smooth mo-

tion, this velocity constancy assumption is valid (except

at motion boundaries). In realistic situations however,

the computation of optic flow has to cope with un-

desired motion of the camera due to shocks or vibra-

tions of the vehicle or robot on which it is mounted.

These perturbations typically manifest themselves as

fast, rotational camera movements (Duric and Rosen-

feld, 2003) that induce large local motions over very

short time spans (Giachetti et al., 1998). Consequently,

the assumption of locally constant velocities is often

violated. A possible solution is to use optic flow al-

gorithms that do not make this assumption (Giachetti

et al., 1998), such as correlation-based matching tech-

niques. Since the performance and reliability of these

techniques on stable sequences, is typically much lower

than those of a differential or phase-based approach

(Barron et al., 1994), a better solution is to stabilize the

image sequence first. After stabilization, the velocity

constancy assumption is met more closely, and conse-

quently, a differential or phase-based approach can be

used to compute optic flow.

1.1. Stabilization

Image sequence stabilization is defined as the process

of modifying an image sequence from a moving or
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jittering camera so that it appears stable or stationary

(Balakirsky and Chellappa, 1996). Traditional stabi-

lization techniques estimate the camera motion first and

use it to render the sequence stable. This egomotion or

rigid self-motion of the camera can be decomposed

into a 3D translation and a 3D rotation. Due to mo-

tion parallax, the translational motion field depends on

the scene structure, while the rotational motion field is

fully determined by the camera parameters only. The

superposition of these two components can result in

complicated motion fields. Although much progress

has been made to date, extracting the camera motion

from such optic flow fields is nontrivial and most algo-

rithms perform well only in specific domains (Xiang

and Cheong, 2003). A distinction can be made between

2D and 3D techniques for electronic image stabiliza-

tion. The former proceed by fitting an affine model to

all motion in the sequence (Morimoto and Chellappa,

1996). This renders them very efficient but limits their

validity to scenes with minimal depth variation (e.g.
aerial images). In contrast, 3D stabilization techniques

operate on the camera rotation only and consequently

do account for a rich scene structure. This approach is

effective since in normal situations (such as driving or

walking), the effects of unwanted translations are neg-

ligible compared to the effects of unwanted rotations

(Duric and Rosenfeld, 2003). These 3D techniques sta-

bilize by de-rotating the frames, in this way generating

a translation-only sequence (Irani et al., 1997), or by

temporally smoothing the rotational component of the

camera motion (Duric and Rosenfeld, 2003). Note that

this involves estimating the rotation in the presence of

general motion, with all its associated difficulties and

ambiguities.

1.2. Fixation

The stabilization strategy adopted by humans and pri-

mates is quite different: motion in the fovea or central,

high-resolution part of the retina is nullified by means

of eye movements. These gaze stabilization eye move-

ments use vestibular, proprioceptive, or visual signals

to achieve this task (Lappe and Hoffmann, 2000). For

the present work we use the term fixation to describe

the effect of such eye movements, that is to hold the

gaze direction towards the same environmental point

through time (Daniilidis, 1997; Fermüller and Aloi-

monos, 1993; Lappe and Rauschecker, 1995). Con-

trary to other 3D stabilization techniques, fixation does

not require estimation of the rotational component of

self-motion and is hence much simpler. Instead, on the

basis of foveal motion only, a compensatory, 3D rota-

tion (eye movement) is determined and superposed on

the motion field. Since rotational jitter acts on every

part of the image or retina, this procedure effectively

removes its effects.

The stabilization method introduced here is very

similar and aims at fixating the central image region in

a short image sequence. A novel variable window size

block matching procedure, that allows for joint fea-

ture selection and feature tracking, enables the fixation

point to remain at this location. By using a correlation-

based matching technique, velocity constancy is not

required at this stage. Since the method specifically

aims at improving the computation of optic flow by

increasing the temporal velocity constancy, the length

of the sequence is determined by the temporal sup-

port required by the optic flow algorithm. The choice

of fixation as the mechanism for stabilization not only

renders the procedure relatively simple (as compared

to other 3D stabilization methods) but has a number

of additional advantages as well. First of all, it is well

known that fixation reduces the number of parameters

that determine the egomotion from five (two for the

heading or translation direction and three for the rota-

tion) to four (Aloimonos et al., 1987). The reason for

this is that the horizontal and vertical rotations that sta-

bilize the fixation point (e.g. the image center) are fully

determined by the (relative) depth of that point and the

current translation. This observation has been exploited

in numerous algorithms (Daniilidis, 1997; Fermüller

and Aloimonos, 1993; Lappe and Rauschecker, 1995;

Taalebinezhaad, 1992) that compute egomotion from

optic or normal flow. A second advantage is related to

the global structure of flow fields obtained during fix-

ation. Typically, during fixation and self-motion, the

singular point of the optic flow field is near the cen-

ter of the visual field (fovea) (Lappe and Rauschecker,

1995). Therefore, this central area contains many dif-

ferent local motion directions that are important for the

analysis of the flow field. In contrast, in the periphery

speed and homogeneity of the flow increase with dis-

tance from the center (cf. center flow field in Fig. 1B).

This allows spatial averaging over a larger scale with-

out losing too much information about the local mo-

tion directions (Lappe, 1996). In other words, fixa-

tion results in a consolidation of information near the

fovea. These global properties are quite robust to scene

changes, heading changes, and small fixational errors

and are therefore a good basis for the development
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of space-variant filtering techniques that improve ego-

motion computation (Calow et al., 2006). Furthermore,

they can directly benefit the computation of optic flow

itself. By fixating prior to flow estimation, the param-

eters for the estimation (e.g. filter sizes) can be pre-

dicted to scale with eccentricity, to a certain extent. In

this way, the performance of single-scale algorithms

can be improved and the increased complexity of, and

computational resources required by multi-scale algo-

rithms avoided.

A number of artificial fixation systems have been

proposed in the past. Most of these systems are active

(they control the camera motion) and employ feedback

to fixate a region of interest (Fermüller and Aloimonos,

1993). Besides being active, they differ from the pro-

posed method in that these regions need to be selected

either manually or by means of ‘interest point detec-

tors’. A passive tracking/fixation system is discussed

in (Taalebinezhaad, 1992). This latter method however

fixates two images to simplify egomotion estimation

and is not suitable for image sequence stabilization.

2. Proposed Method

In this section we give a brief overview of the pro-

posed stabilization method and explain in what way it

alters classical optic flow computation. Figure 1 illus-

trates both the classical (A) and proposed (B) approach

graphically.

Figure 1. Classical optic flow computation (A) and the proposed method (B). The dashed box marks the sliding temporal window used in

computing the optic flow at time t . Without stabilization, the flow field is sparse and noisy (right flow field in A). The small filled squares mark

the location of the feature that is at the image center at time t . After fixation, this feature is motionless in the warped images (B). Note how a

rotational curl is present in the flow field computed on the stabilized images. An optional de-fixation step can transform the flow field into one

that more closely resembles the flow field computed on the original sequence.

Typical approaches to compute optic flow for each

frame of a long image sequence involve the use of a

sliding temporal window. A short window, the length

of which depends on the temporal support required by

the optic flow algorithm, is moved over the sequence

one frame at a time and the instantaneous velocity

field is computed for the central frame of the window

(Section 2.3). This window is marked by the dashed

boxes in Figure 1 and contains three frames in this ex-

ample. As illustrated in Figure 1A, when optic flow is

extracted from these frames directly, the obtained flow

field is often sparse and noisy. The proposed stabiliza-

tion method operates on the images in these short win-

dows, and optic flow is computed only after all images

within the sliding window are stabilized. Stabilization

consists of a simulated fixation (Section 2.1) of the

central part of the short image sequence. The feature

that is at the image center at time t is marked by the

small filled squares in Figure 1. Fixation involves de-

tecting and tracking this feature over the current tempo-

ral window (Section 2.2). After stabilization, its loca-

tion remains fixed in the image center. Next, optic flow

is computed on this ‘fixated’ image sequence. Due to

the stabilizing effect of this fixation, the resulting flow

field is typically less noisy and denser than the one

computed directly on the original image sequence. As

discussed in the introduction, certain global structural

properties of the fixated flow field differ from those of

the original flow field. Note how the fixation has added

a rotational curl to the center flow field in Figure 1B

and rendered the image center (indicated with the small
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square) motion-free. Although not necessary for most

purposes, certain applications require flow fields that

more closely resemble those computed on the origi-

nal image sequence. For this reason, the stabilization

procedure contains an optional de-fixation step (Sec-

tion 2.4) that removes the rotational stabilization ef-

fects from the optic flow field. The resulting flow field

is shown to the right in Fig. 1B and looks very similar

to the original one from Fig. 1A, except that the former

is less noisy and denser.

2.1. Image Sequence Stabilization

Similar to other active and passive systems that exploit

foveal representations (Daniilidis, 1997; Fermüller and

Aloimonos, 1993), the optical image center (the inter-

section of the optical axis with the image) is chosen

as the fixation point in our method. This is similar to

the biological case in the sense that it corresponds to

the direction of gaze. Although the location of the fixa-

tion point does not affect the generality of the method,

choosing the center has certain advantages, such as al-

lowing for the same amount of warping in all direc-

tions. Keeping this location fixed renders the proce-

dure conceptually simple and yields more stable global

structural properties of the flow field (Section 4.4),

which in turn can be exploited efficiently by hardware

architectures.

Fixation is achieved by means of simulated 3D rota-

tions around the x- and y-axes of the observer-centered

coordinate system1. Although relevant in the context of

stabilization, z-axis rotations are not considered here

(see also Section 2.2), without loss of generality of

the fixation procedure. Figure 2 illustrates the stabi-

lization method for an example sequence consisting of

five frames. To transform the sequence into a fixated se-

quence, i.e. a sequence in which the central image part

is motion-free, the central part of the middle frame

(the ‘template window’, indicated by the small solid

square) needs to be localized in all frames of the se-

quence. A straightforward way to achieve this tracking

Figure 2. Stabilization by means of fixation. The central image region of frame 3 is backward and forward tracked to frames 1

and 5 respectively. In this way, the individual displacements dij, denoting the movement of the feature from frame i to frame j , are

determined.

would be to block match the central part of frame 3

directly to all other frames. However, to allow for grad-

ual texture changes and to limit the size of the search

windows (dashed squares), tracking is performed iter-

atively in our method. To match backward from frame

3 to frame 1, the texture in the center square of frame

3 is first matched to the area within the search win-

dow in frame 2. The obtained displacement (arrow in

frame 2) is used to move the search window in frame 1

and the texture found in frame 2 (small square) is then

matched to this search window. A similar procedure is

followed to match forward to frame 5. These displace-

ments uniquely determine a 3D rotation for each frame

that warps the texture most similar to the central tex-

ture of the middle frame to the center of the respective

frame.

As an example, we determine the rotation for frame 1

from Fig. 2. The center coordinates of the template

window in frame 1 equal: (x1, y1) = d32 + d21. Since

the stabilization operates on short temporal windows,

a velocity-based scheme yields a reasonable approxi-

mation of the 3D rotation (Adiv, 1985). In this scheme,

the instantaneous velocity (ẋ, ẏ) of image point (x, y)

resulting from the camera rotation (ωx , ωy, ωz) equals:

ẋ = ωx
xy

f
− ωy

(
f + x2

f

)
+ ωz y (1)

ẏ = ωx

(
f + y2

f

)
− ωy

xy

f
− ωz x , (2)

where f is the focal length of the camera. Con-

sequently, the compensatory 3D rotation that warps

(x1, y1) to the center pixel (0, 0) should result in the

following motion vector at (x1, y1):

ẋ1 = −x1 (3)

ẏ1 = −y1 . (4)

Since we only consider x- and y-axis rotations in

the stabilization, a unique compensatory 3D rotation
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satisfies this requirement:

(ωx , ωy, ωz) = (− y1 f

f 2 + x2
1 + y2

1

,
x1 f

f 2 + x2
1 + y2

1

, 0) .

(5)

This rotation is now used to warp every pixel (x, y) in

frame 1 according to Eqs. (1) and (2). Cubic convolu-

tion interpolation (Keys, 1981) is used to perform these

warps with subpixel accuracy.

After warping each frame (except the middle frame)

according to the stabilizing rotations, the central part

of the image sequence is motion-free. Note that the in-

terframe rotations are not necessarily identical. In case

there is a need to reconstruct the original flow fields,

these rotations must be averaged in the de-fixation step

(Section 2.4).

2.2. Variable Window Size Matching

As discussed in the previous section, the stabilization

method requires tracking the central region of the mid-

dle frame over the short image sequence. All matching

is performed using the normalized cross correlation

method (Lewis, 1995). Since the location of the fixa-

tion point is set in advance, the use of a fixed window

size at this location can result in a textureless template

window. This is contrary to most approaches to feature

tracking which use interest point detectors to first local-

ize regions in the image that contain certain types of tex-

tures or features that simplify matching. Fixed-window

block-matching techniques are then typically used to

track these regions over different frames. Although the

proposed method is not allowed to change the location

of the fixation point, the size of the template window

can be chosen freely. To ensure the general applicabil-

ity of the method, the window size should be increased

in the absence of texture or in ambiguous situations due

to a repetitive pattern. In the context of stereo match-

ing, Kanade and Okutomi (1994) proposed an adap-

tive window method that optimally balances between

signal-to-noise ratio or intensity variation maximiza-

tion and projective distortion (due to variations in the

depth of scene points) minimization. This technique is

however unable to deal with repetitive patterns. It is

very important to take such ambiguities into account,

since they can result in large estimated displacements

that may deteriorate the subsequent computation of op-

tic flow. A possible approach to detect spurious matches

is to analyze the cross-correlation surface in terms of its

peakedness (Anandan, 1989). However, such analysis

requires a set of relatively arbitrary thresholds, so that

its reliability can be called into question (Barron et al.,

1994).

On the basis of two heuristics, we propose a simple

and robust matching algorithm that effectively com-

bines feature selection and feature matching. The first

heuristic is founded on the observation that when a

repetitive pattern is accidentally matched to a wrong

instance, it is unlikely that an identical displacement is

obtained when the matching is repeated with a slightly

larger window. The heuristic consists of increasing the

window size until two successive matches result in

the same displacement vector. This yields excellent re-

sults in most cases and typically results in very small

template windows. However, there still remain situa-

tions where the procedure is confused by strong repet-

itive patterns. Most matching techniques validate lo-

cal matches by means of global constraints inherent to

the problem (e.g. stereo or rigid body motion). A con-

straint we can employ here is the following: if we track

a feature over three consecutive frames 1, 2, and 3, the

displacements from frame 1 to 2 (d12) and from 2 to 3

(d23) should add up to the displacement obtained when

directly matching frame 1 to frame 3 (d12 +d23 = d13).

The combination of these heuristics results in the fol-

lowing matching algorithm for matching frame 1 to

frame 2, using frames 1, 2, and 3:

INITIALIZE

template window size w = 0

search window size s = 0

displacements d0
12, d0

23, d0
13 = NaN

iteration i = 0

DO

w = w + 10 ; s = w + 50 ; i = i + 1

match frame 1 to frame 2 → di
12

match frame 2 to frame 3 → di
23

match frame 1 to frame 3 → di
13

UNTIL

di−1
12 = di

12 ; di−1
23 = di

23 ; di−1
13 = di

13

di
13 = di

12 + di
23

In the next frame, matching is performed using the

constraint d23 + d34 = d24. This is continued until

the complete short sequence is stabilized. In a single

step of the algorithm, the same template and search

window sizes are used for all three matches. Note that

this simple algorithm requires only two parameters:
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the increase in the template window size after each

iteration and the size of the search window, relative to

the template window size.

Since this matching component is a crucial part of

the proposed method, we apply an additional subpixel

refinement step after all pixelwise displacements are

estimated. Assuming that the above-mentioned match-

ing procedure correctly computes the integer parts of

the displacements, we further refine these estimates

by computing the least-squares fit to the gradient con-

straint equation (Horn and Schunck, 1981). The sub-

pixel displacement (sx , sy) is chosen that minimizes the

constraint deviation over the smallest template window

� that yields the correct (pixelwise) displacement es-

timates:∑
x∈�

(
Ix (x, t)sx + Iy(x, t)sy + It (x, t)

)2

, (6)

where Ip(x, t) is the partial derivative of the image in-

tensity function to parameter p at pixel x = (x, y) and

time t . These partial derivatives are approximated by

forward differences (after compensating for the pixel-

wise motion). Instead of Eq. (6), a more complex mo-

tion model that also incorporates rotations around the

line of sight (z-axis) could be used at this stage. This

has not been included here for two reasons. First of all,

a richer model might reduce the accuracy of the dis-

placement estimates. Secondly, contrary to the deter-

mination of the fixational rotation, which is restricted to

a small area surrounding the fixation point, the extrac-

tion of z-axis rotation can exploit information located

anywhere in the image. Consequently, instead of in-

creasing the model complexity at the template window,

an even more sophisticated procedure, not restricted to

this window, is more appropriate.

In certain situations, it is possible that relatively large

template windows are necessary and that the stabilized

sequence no longer fixates exactly on the image cen-

ter. Imperfections in the tracking, however, only result

in imperfect fixation, but not in incorrect flow or ego-

motion computation, since the performed warps are

known and can be used to reconstruct the original flow

(see Section 2.4). Therefore, only algorithms that build

on a perfectly fixated flow field are affected by this.

2.3. Optic Flow

To demonstrate the consistency of our results, we use

two fundamentally different optic flow algorithms. The

first algorithm is the well-accepted differential-based

algorithm by Lucas and Kanade (1981) (LUC). As sug-

gested in Barron et al. (1994), the image sequence is

first smoothed with a spatiotemporal Gaussian filter

with a standard deviation of 1.5 pixels-frames before

computing the derivatives. We use image sequences

of length 13 to have sufficient temporal support. The

second algorithm is a more recent phase-based algo-

rithm by Gautama and Van Hulle (2002) (GAU). This

algorithm uses spatial filtering to compute phase com-

ponents of oriented filters at every time frame. The tem-

poral phase gradient is estimated from this sequence of

phase components using linear regression. Finally, an

intersection-of-constraints step extracts the full veloc-

ity from the component velocities. The resulting op-

tic flow fields have been shown to be much denser

and more accurate than those obtained with LUC

(Gautama and Van Hulle, 2002). For this algorithm,

we use the parameters suggested in Gautama and

Van Hulle (2002). No pre-smoothing is required here

and the algorithm uses only five frames.

2.4. De-fixation

Figure 3 contains flow fields for an example frame of

one of the sequences (Section 3) used in the analyses.

The top and bottom row flow fields have been extracted

using LUC and GAU respectively. The optic flow in the

center column has been computed directly on the orig-

inal sequence whereas the left column flow has been

computed after fixation. When comparing these two

columns, it is clear that the flow fields can look very

different. A comparison of these two flow fields is im-

portant for the validation of the stabilization method.

Even though it is not required for the computation of

the translational egomotion parameters and the subse-

quent recovery of structure from motion, certain appli-

cations may also prefer operating on flow fields that

more closely resemble the flow fields computed on the

original sequence, or may require knowledge of the

true rotational egomotion parameters. To achieve these

goals, the fixating rotation needs to be determined and

the original flow reconstructed by ‘de-fixating’ the sta-

bilized flow fields, i.e. removing the effects of this fixat-

ing rotation. Since the interframe rotations that stabilize

the short image sequence are not necessarily identical,

de-fixation requires their summarization into a single

rotation.

The most sensible way to proceed is by averaging the

individual rotations in the same way as the optic flow
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Figure 3. Flow fields computed for the city3 frame shown in Figure 4. The flow has been computed using LUC (top row) and GAU (bottom

row). The left and middle columns contain the flow fields computed respectively with and without stabilization. The right column contains the

stabilized flow fields after removal of the stabilizing rotation. All flow fields have been subsampled and scaled 10 times.

algorithm averages the temporal information over the

sequence. For the phase-based algorithm, all five

frames are equally weighted, so a simple averaging

of the four interframe rotations yields the best re-

sults. In our Lucas and Kanade implementation 13

frames are spatiotemporally convolved with a Gaus-

sian of standard deviation 1.5 pixels-frames, and the

five central frames are retained. On the basis of these

five frames, derivatives are computed with four-point

central differences by convolution with the mask:
1
12

(−1, 8, 0, −8, 1). We apply a similar transformation

to compute the average rotation. In this way, each in-

dividual rotation influences the computation of the av-

erage rotation in a similar way as the respective frame

influences the computation of the temporal derivatives.

This is achieved by first convolving the interframe ro-

tations with the same Gaussian used in the flow com-

putation, and then computing the average rotation as

the weighted average of the four central interframe ro-

tations, with weights equal to 1
18

(1, 8, 8, 1).

The de-fixation procedure has been applied to the

flow fields in the left column of Fig. 3 and the results

are shown in the right column. It is clear that for both

algorithms the de-fixated flow fields very closely re-

semble the ones computed on the original sequences

(except that the former are denser and less noisy). In

conclusion, we can see that, although stabilization can

arbitrarily change the inter-frame rotations over a short

sequence, it is still possible to extract a single fixating

rotation and to reconstruct the flow, as corresponding

directly to the original sequence.

3. Sequences

Three real-world driving sequences are used in the anal-

yses. The sequences have been recorded with a camera

rigidly installed behind the front shield of a moving

car2. All sequences are 18 seconds long and contain

450 frames at a resolution of 638 × 508 pixels. The

sequences contain a wide variety of inner-city driv-

ing situations. An example frame from each sequence

is shown in Figure 4. Stabilizing these sequences is

nontrivial, as the scenes exhibit large depth variability

and stable features (e.g. the horizon) are lacking. The

sequences differ with respect to the curvature of the

trajectory, illumination conditions, and the overall con-

dition of the road. The latter directly relates to camera

jitter. Note that even though the camera is fixed relative

to the car, this does not imply a constant heading. When
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Figure 4. Example frames from the three sequences used. All sequences consist of 450 frames and contain a wide variety of driving situations

and illumination conditions.

the car moves along curves or overtakes other cars, the

heading strongly deviates from a forward translation.

Although only driving sequences are used in the eval-

uation, no characteristics specific to this kind of se-

quences (such as the high speed or the presence of a

road) are exploited by the method. Consequently, the

method is applicable in more general situations involv-

ing self-motion (e.g. walking in natural scenes).

4. Results

In this section, the effects of stabilization on the com-

puted optic flow are investigated by comparing density

and global structure of the optic flow fields computed

before and after stabilization. To show the merits of

our proposed fixation approach, two other stabilization

methods are included in the comparison as well. Both

techniques are explained next.

4.1. Alternative Stabilization Techniques

The first technique (TRA) registers two images by es-

timating a 2D translation globally, using the whole im-

ages. This mechanism is typically used in electronic

stabilization systems of commercial cameras. In our

implementation, images are matched by applying the

normalized cross correlation technique to the entire im-

ages. Although time-consuming, this is effective.

The second technique (PHC) is more sophisticated

and estimates the best-fitting affine transformation (2D

translation, 2D rotation, and scale) between two im-

ages. As mentioned in the introduction, for scenes with

minimal depth variation this transformation largely ac-

counts for the camera motion. The affine transforma-

tion is found by performing phase correlation, both in

the original space (to find the 2D translation) and in

log-polar space (to find the rotation and scale) (Reddy

and Chatterji, 1996).

Both registration techniques are applied in the stabi-

lization framework explained in Section 2.1. In a sim-

ilar fashion as the proposed method, all frames of the

short sequence are matched to the center frame. Only

consecutive frames are registered and the estimated

transformations are accumulated. A similar procedure

to the one described in Section 2.4 is used to compute

the average transformations for TRA and PHC, which

can be used to reconstruct the original flow fields from

the stabilized if desired.

4.2. Optic Flow Reliability Measures

When evaluating the density and global structure of the

optic flow fields, only reliable flow vectors are consid-

ered. Two different reliability measures are computed

for each flow vector and only if both agree, the flow

vector is retained.

A first measure of reliability is provided by the optic

flow algorithms themselves. For LUC, a velocity esti-

mate is retained if the least-squares matrix used in solv-

ing the gradient constraint equation (a weighted version

of Eq. 6) is invertible (Barron et al., 1994). GAU con-

siders a full velocity estimate to be reliable if at least

five component velocities are used in its determina-

tion (a total of 11 component velocities are computed

at each location). A component velocity is rejected if

the corresponding filter pair’s phase information is not

linear over the short sequence.

In addition to this first measure, a second reliabil-

ity measure is computed. This measure, the image

reconstruction quality, is independent of the flow
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algorithm and allows for flow field transformations

(e.g. de-fixation) before evaluation. Given the optic

flow vector (ẋ, ẏ) at location (x, y) and time instant

t , we define the image reconstruction quality as the

normalized correlation between the intensity values of

small windows centered at (x, y) and (x + ẋ, y + ẏ) in

frames t and t + 1 respectively. A flow vector is con-

sidered reliable when this correlation exceeds 0.9. The

correlation is computed over windows of size 15 × 15

pixels and cubic interpolation is used to achieve sub-

pixel accuracy in the comparison. Measures based on

the reconstruction quality have been shown to yield

adequate performance in evaluating flow vector qual-

ity (Lin and Barron, 1995).

4.3. Optic Flow Field Density

The flow field density is the number of reliable flow vec-

tors divided by the number of pixels. For the original

flow fields, the image reconstruction quality is eval-

uated directly on the original images. For the stabi-

lized flow fields, the average effect of the stabilizing

transformations is first removed from the flow fields,

using the de-fixation procedure for FIX and similar

reconstruction procedures for TRA and PHC. In this

way, the reconstruction quality is also evaluated on the

original images. This allows for a more direct com-

parison between the different flow fields. Note that

this also validates that the stabilization and reconstruc-

tion procedures preserve the dynamic aspects of the

sequence. Table 1 contains the average density of re-

liable flow vectors before and after stabilization for

all algorithms on all three sequences. Since the den-

sity varies widely across frames, the frame index is in-

cluded as a factor in a two-way ANOVA. Using a Tukey

multiple-comparison test (Hsu, 1996), the significance

of all individual pairwise differences in mean density

Table 1. Average flow field density (in percent) obtained on the original

sequence (ORG) and after stabilization using 2D translation (TRA), phase

correlation (PHC), and fixation (FIX). The mean density is underlined if all

pairwise differences in which the respective algorithm occurs are significant.

For each combination of sequence and optic flow algorithm, the joint signifi-

cance level of all pairwise differences is 0.05.

LUC GAU

seq ORG TRA PHC FIX ORG TRA PHC FIX

city1 21.3 21.6 26.8 22.0 24.2 18.4 19.4 27.6

city2 21.5 21.8 24.7 23.0 22.1 20.4 21.2 27.0

city3 15.9 17.6 23.2 19.3 14.8 15.1 15.6 23.0

is assessed at the joint significance level of 0.05. The

mean density is underlined in the table if all pairwise

differences in which the respective algorithm occurs

are significant. This analysis is repeated for each com-

bination of sequence and optic flow algorithm.

For the proposed method FIX, stabilization results in

a significant increase in flow density as compared to the

original sequence on all occasions. For optic flow algo-

rithm LUC, we see that FIX performs better than TRA

but is outperformed by PHC on all sequences. This is

due to the estimation of scale by the registration compo-

nent of PHC, which results in smaller displacements in

the stabilized sequences on average (see also Figure 5).

As a consequence of this, the number of flow vectors

that are within the acceptable magnitude bounds of

the single-scale flow algorithm increases. Even though

this is also the case for optic flow algorithm GAU, a

very different result is obtained. Here PHC and TRA

perform much worse than FIX, and the obtained den-

sities are not significantly different from those com-

puted on the original sequence (they are even smaller

for city1). The reason for this weak performance is that

both PHC and TRA are whole-image techniques that

lack a tracking component. In other words, they do not

guarantee that the same features are matched over the

entire short sequence, as does the proposed method.

This is not a problem if the model employed by the

registration technique is a good approximation of the

camera movement, but due to the rich scene structure

of the sequences used, this is not the case here. Al-

though PHC yields good results when registering two

frames, inconsistencies occur in longer sequences. As

a result, the local velocities no longer remain constant

and the estimates are rejected by the reliability mea-

sure of GAU. It is clear from the results that this effect

strongly outweighs the advantages resulting from the

average magnitude reduction. This effect is weaker for

LUC since this optic flow algorithm strongly smooths
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the sequences before estimating the gradients. As a

consequence, the reliability measure is less sensitive to

small inaccuracies. This smoothing however leads to

less accurate flow estimates (Gautama and Van Hulle,

2002).

4.4. Global Flow Field Structure

As discussed in the introduction, fixation renders cer-

tain global flow field properties more predictable. In

particular, speed and homogeneity of the flow vec-

tors tend to increase with distance from the fixation

point. The speed effects can be quantified by evaluat-

ing the mean and standard deviation of the flow vector

magnitude as a function of eccentricity (the fixation

point is the image center). These values are computed

by averaging, for each frame, the flow vector magni-

tudes within specific eccentricity rings and summariz-

ing these values over all sequences. The results are

shown in Figure 5. The mean and standard deviation of

the magnitudes are shown in the left and right columns

respectively. The results are qualitatively similar for

both optic flow algorithms.

For the original sequence (dashed lines) and TRA

(dotted lines), the mean magnitude increases slightly

with eccentricity and the standard deviation remains

Figure 5. Mean (left column) and standard deviation (right column) of the optic flow vector magnitude as a function of eccentricity with

and without stabilization. The results have been summarized over all sequences and are shown in the top and bottom row for LUC and GAU

respectively.

large throughout, as compared to the other algorithms.

As expected, for PHC (dash-dotted lines) the mean

magnitudes are strongly reduced at all eccentricities.

The standard deviation is also much smaller. This

renders the magnitude of the velocity vectors well-

predictable, but less so near the fovea.

Finally, the results for the proposed method FIX

(solid lines) show a very strong upward trend in the

mean motion magnitudes and a small standard devia-

tion throughout. Note that this does not necessarily im-

ply that after stabilization, the flow field is purely trans-

lational with focus of expansion in the center (see e.g.
the stabilized flow field in Figure 1B). Differences with

PHC occur near the fovea, where FIX results in smaller

magnitudes and standard deviations, and at large eccen-

tricities, where the mean magnitudes are larger for FIX.

In conclusion, both the proposed stabilization by fix-

ation and PHC render the global structure of the optic

flow fields more predictable. The structure imposed

by the proposed method is however much more pro-

nounced. As can be expected from a fixation-based

system, the image is very well stabilized near the cen-

ter. In this way, static image processing in general be-

comes much easier at this location. For a system that

has to perform many tasks at once, this may be very

important.
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5. Conclusion

The proposed method achieves stabilization by fixating

short image sequences. After stabilization, optic flow

computation is greatly facilitated. It has been argued

that this processing order and the techniques devel-

oped to achieve it, can provide important advantages

that enable a more robust extraction of behaviorally

relevant information, such as camera motion, structure

from motion, and independent motion. First, the im-

proved flow density allows for a more accurate ego-

motion estimation using egomotion algorithms that are

proven consistent (Zhang and Tomasi, 2002). Second,

during fixation, the number of parameters required to

describe the egomotion is reduced from five to four.

Last, fixation renders the global flow field structure

better predictable and results in a consolidation of in-

formation near the fovea, which is advantageous for

the application of optimized noise filtering and/or data

compression techniques. This increased structural con-

sistency also enables one to define, in advance, sensible

space-variant parameters for single-scale optic flow al-

gorithms.

Although possible extensions related to the compen-

sation of z-axis rotation have not yet been included

in the algorithm, significant quantitative improvements

of stabilization with respect to optic flow density and

global flow structure have been demonstrated. In an ex-

tensive comparison with established stabilization pro-

cedures, it has been shown that sequences stabilized

with the proposed method are better conditioned for

highly accurate optic flow algorithms. Furthermore, the

global structure of the resulting flow estimates is much

more pronounced.
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Notes

1. In this coordinate system the x-axis is horizontal, the y-axis ver-

tical and the z-axis coincides with the line of sight. The origin

corresponds to the optical center of the camera.

2. All sequences have been recorded in the context of the ECOVI-

SION project. Courtesy of Dr. Norbert Krüger, Aalborg Univer-

sity Copenhagen, and HELLA Hueck KG, Lippstadt.
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1 Introduction

The human visual system is efficient at grouping together visual information that belongs to the
same objects, regardless of noise and ambiguity. Salient objects immediately ‘pop out’ of the visual
environment. Gestalt psychologists suggested that this emergence of some coherent sub–parts of the
scene is driven by a certain number of rules, also called Gestalt Laws. These laws stated that certain
regularities lead the visual system to group together visual information that would otherwise be, from
a local signal viewpoint, distinct. Such laws included, e.g., proximity, good continuation, similarity
and symmetry. Striking demonstrations of such a bias in the human visual system exist in the form of
so–called visual illusions: e.g. the Kanisza triangle, where an illusory triangle is strongly perceived.
There has been discussions that such laws might be originated by statistical properties in natural
images. This was later demonstrated by [18, 8, 12]. In [7] a statistical approach was used to extract
close contours. The statistical part was mainly concerned with the pairwise grouping of local edge
pixels. [4] proposed a complementary statistical scheme to extract global groups from such informa-
tion. We believe that such an approach can be extended to extract salient image structures without
prior assumption on the scene witnessed or the objects that constitute it, and we propose to call
those Structured Visual Events (SVE). The primordial sort of structural SVE is a contour, and in its
simplest form, the line. As discussed in [4], the likelihood for accidental alignment of edge pixels (or
alternatively local edge–like features) is decreasing with the square of the size of the contour. Such
SVE correspond to the Gestalt law of Good Continuation, and therefore we propose that more SVE
could be inferred according to the other aforementioned laws.
In the present work we will consider the following regularities:

• Parallelism

• Coplanarity (in space, described in [15]).

• Similarity (co-colority, described in [15]).

• Good continuation (described in [25]).

All of these regularities are defined in 3D space, or alternatively across stereo in both images —
see [15] for a detailed description.
We will propose a simple scheme to extract salient locations in the images, salient in the sense of a
statistical oddity that is likely to correspond to an object in the scene. We will use in conjunction the
above-mentioned relations to segment the visual world into Structured Visual Events and background.
Note that the segmentation of visual scenes is a difficult problem, that found some satisfying solutions
in the limited case of foreground/background segmentation, but that is otherwise unsolved. [9]

2 Visual primitives

Numerous feature detectors exist in the literature (see [23] for a review). Each feature based approach
can be divided into an interest point detector (e.g. [13, 3]) and a descriptor describing a local patch
of the image at this location, that can be based on histograms (e.g. [5, 23]), spatial frequency [17],
local derivatives [14, 10, 1] steerable filters [11], or invariant moments ([22]). In [23] these different
descriptors have been compared, showing a best performance for SIFT-like descriptors.
The primitives we will be using in this work are local, multi–modal edge descriptors that were in-
troduced in [20]. In contrast to the above mentioned features these primitives focus on giving a
semantically and geometrically meaningful description of the local image patch. The importance of
such a semantic grounding of features for a general purpose vision front–end, and the relevance of
edge–like structures for this purposes were discussed in [6].
The primitives are extracted sparsely at locations in the image that are the most likely to contain
edges. This likelihood is computed using the intrinsic dimensionality measure proposed in [19]. The
sparseness is assured using a classical winner take all operation, insuring that the generative patches

1
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(a) (b)

(c)

1)

2)

4)3)

(d)

Figure 1: Illustration of the primitive extraction process from a video sequence. The figure shows
in (a) one image from a video sequence on the right, then (b) the 2D–primitives extracted from this
image, with a magnified version on (c). The blue lines between the primitives show the result of the
perceptual grouping presented in [25] (d) describe the schematic representation of the 2D–primitives,
where 1. shows the orientation of the primitive, 2. the phase, 3. the colour and 4. the optic flow.

of the primitives do not overlap (for details, see [21]). Each of the primitive encodes the image
information contained by a local image patch. Multi–modal information is gathered from this image
patch, including the position m of the centre of the patch, the orientation θ of the edge, the phase ω
of the signal at this point, the colour c sampled over the image patch on both sides of the edge and
the local optical flow f . Consequently a local image patch is described by the following multi–modal
vector:

π = (m, θ, ω, c,f , ρ)T , (1)

that we will name 2D primitive in the following. In this equation m refers to the position of the
centre of the primitive in the image, θ is the orientation of the primitive, ω is the phase, c is the
colour value, f is the local optic flow and ρ is the size of the primitive — see figure 1.
Note that these primitives are of lower dimensionality than, e.g., SIFT (10 vs. 128) and therefore
suffer of a lesser distinctiveness. Nonetheless, as shown in [25] that they are distinctive enough for
a reliable stereo matching if the epipolar geometry of the cameras is known. Furthermore, their
semantic in terms of geometric and appearance based information allow for a good description of the
scene content. It has been previously argued in [6] that edge pixels contain all important information
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(a) image (b) collinear groups

Figure 2: Collinear groups extracted from a sample image.

in an image. As a consequence, the ensemble of all primitives extracted from an image describe the
shapes present in this image.
Advantageously, the rich information carried by the 2D–primitives can be reconstructed in 3D, pro-
viding a more complete scene representation. Having geometrical meaning for the primitive allows to
describe the relation between proximate primitives in terms of perceptual grouping.
In a stereo scenario a 3D–primitive Π can be computed from two corresponding 2D–primitives (see
figure 1 and [25]): such that we have a projection relation:

P : Π → π . (2)

A 3D–primitive π is described by the vector:

Π = (M ,Θ,Ω,C)T , (3)

where M is the location in space of the centre of the primitive, Θ is its orientation vector, Ω is its
phase and C holds the colour on both sides of the primitive.

3 Relations between primitives

In [15] a variety of relations that can be drawn between visual primitives were reviewed. In this paper
we will focus on the following:

3.1 Collinearity

In [25] we proposed a simple scheme for grouping primitives that describe the same (smooth) contour
of the scene. Herein we will assume that objects are delimited by piecewise smooth contours, joined
by junctions. We will hereafter call contour these smooth sections.
Figure 2 shows the contours extracted by the grouping mechanism described in [25].

3.2 Proximity

The proximity relation is the fact that the two primitives, when re-projected onto both views are
distant of less than a certain radius. The likelihood for a random occurrence of this relation is:

p(dE(a, b) < τE) =
(τE)2

ρ2
p(π) (4)

where p(π) is the prior probability for the extraction of a primitive at a location.

p(π) =
cr

#(π)ρ2
(5)
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for a c × r image where #(π) primitives were extracted. Note that this two–dimensional definition
of proxity is extended to 3D by enforcing that the re–projections on both image planes of the two
3D–primitives be proximate according to 2D definition.

3.3 Parallelism

We define the parallelism between two primitives as follows:

Definition 1. Two primitives are said parallel if they share the same orientation.

Therefore, collinearity is defined as follows:

||(a, b) = acos(Θa ·Θb) (6)

If we consider that ||(a, b) is always between [−π
2 ,+π

2 ] and if we consider as parallel all primitive pair
(a, b) such that ||(a, b) < τcoll, where τcoll is the tolerance of the parallelism definition, then we have:

pprior(coll(a, b) < τcoll) =
π

τcoll
(7)

assuming normal distribution.1

3.4 Coplanarity

Coplanarity was defined in [15]. Note that the shape of circular contours tend to be inaccurately
reconstructed (due to the nearly horizontal parts of the curve). Therefore the coplanarity relation is
not very robust on circular structures.

3.5 Co–colority

We expect contours of the same surface to be co–colour. The co–colourity relation capture this prior
knowledge about surfaces of the world. We will make use of this relation in conjunction with the
parallelism and coplanarity relations to compensate for their relative statistical weakness. Co–colority
is fully described in [15].

4 Relations between contours

As stated before, the relations between two primitives, taken individually are still statistically weak
events. Moreover, we argued in [25] that contours and not primitives (that are merely local descriptors
sampled from scene contours) should be used for scene description.
Therefore we will extend the relations mentioned in the previous section onto contours. In extending
the definition to collinear groups, we want to generate rarer, and therefore more salient, events.

4.1 Symbolic representation of contours

From the pairwise good continuation relation proposed in [25] we propose to extract the whole contour
by using a classical transitivity relation.

Definition 2. If primitive A and B are linked, and B and C are linked, then A, B and C are part of
the same contour.

We describe the resulting contours with the four following measures:

1Given that horizontal and vertical edges are more common in natural scenes than other orientations, this assumption
of a normal distribution do not hold. Nevertheless it is good enough as a working hypothesis. Having a proper model
of the orientation co–occurrence would only serve to weight less horizontal collinear segments than other orientations,
which would not serve any purpose for SVE extraction.

4
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(a) collinearity (b) parallelism (c) coplanarity

Figure 3: Illustration of the primitive grouping scheme from the basic relations. (a) The contour A
is extracted from primitives ai that are all linked together by transitivity. (b) The two groups are
parallel according to the global and local criteria. (c) The two groups A and B are coplanar. The
dashed circle shows the proximity criterion.

• The center of mass (x) of the positions of all primitives that belong to the contour.

• The main axis (u): that is the first principal axis of the positions of the primitives that belong
to the contour. Its norm is the elongation of the contour in this axis.

• The second axis (v): that is the second principal axis. If the contour is perfectly rectilinear,
then this axis is the null vector. Otherwise it is an indication of the curvature of the contour.

• The planarity (p) states how well the primitives are embedded into the plane formed by these
two axes. In other word it is the elongation over the third principal axis.

And therefore a contour is described by the vector:

C = (x,u,v, p) (8)

Additionally a contour also contains the list of primitives that generated it, allowing for more complex
comparison methods. In figure 3(a) the symbolic representation of the contours is shown. In the
following we propose to use the contours, instead of the primitives themselves, to test for relations
and evaluate saliency in a more powerful fashion.

4.2 Parallel contours

By extension we will consider that two contours A and B are parallel iff:

∀Πi ∈ A,Πj = arg minΠk∈B(dE(M i,Mk)),{
——(Πi,Πj) < τ||

|dE(M i,M j)− dE(A,B)| < τE

(9)

where M i is the position of the primitive Πi, dE is the Euclidian distance, dE(G1, G2) is the min
distance between the two contours, and τE is the tolerance. Note that the second line is the global
constraint for parallelism, whereas the first line is the local one. The first constraint statistically
weakens with larger contours whereas the second one strengthens. Note that this interpretation of
parallelism can capture curved contours that are equidistant in all points. This is illustrated in
figure 3(b). In there the dashed arrows represent the primitives that are the closest between the two
groups and the most parallel.
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4.3 Coplanar contours

Building onto the definition of coplanarity between two primitives, we define that a primitive a is
coplanar to a contour B = (b0, . . . , bn) iff

cop(a,B) iff
#cop(a, bi)

#B
< r (10)

where r is a ratio, that we set to r = 0.8 for our experiments. A higher value will lead to a stricter
definition whereas a lower one will find more cases of coplanarity.
Then we define the coplanarity between two contours A = (a0, . . . , an) and B = (b0, . . . , bn) as

cop(A,B) iff


#cop(ai∈A,B)

#A < r
#cop(bj∈B,A)

#B < r

minai∈A,bj∈B(dE(ai, bj)) < τE

(11)

In other words, two groups are coplanar if a sufficient ratio of the primitives thereof are coplanar.
Note that this can only occur for groups with a strong planarity. This is illustrated in figure 3(c),
where the dashed circle shows the proximity criterion, and the dashed lines represent the two other
criteria.

5 Results and discussion

We applied these relations to some video simple sequences featuring some sample objects. For the
purpose of these experiments we proceeded in extracting the SVEs in two steps:

1. extract 3D contours, as in [15].

2. Compute the relations between all contours.

3. merge all linked contour into one SVE.

Note that this method is only used for experimentation purpose. In the future it would be preferable
to keep the relational structure between all primitives instead of merging them all into one group.
We applied this method for two combinations of relations:

Parallelism + co–colourity: In this case we only considered the relation of parallelism. We also
required that two primitives be co–colour in order to be considered as parallel. The results of this
method applied to a driving scene are shown in figure 4. There we can see that the different parts of
the white line are merged together. On the other hand, the two crescent–shaped parts of the traffic
sign are left separate. Also the three lines on the ground, although parallel are not merged. This is
due to the proximity constraint that we enforced in the definition of contour parallelism.

Coplanarity + co–colority For the second experiment we replaced the parallelism relation by
the somewhat weaker coplanarity relation. Here again we required that the co–colourity be respected
to consider two primitives as coplanar. The results applied to a sequence showing a traffic sign are
shown in figure 5. Note that both sides of the support and both sides of the traffic signs a successfully
grouped. The horizontal part of the traffic sign suffer from a reconstruction of low accuracy (because
it is horizontal) and therefore the coplanarity is too weak to merge it. The results when applied to
another scene featuring two mugs on a table are shown in 6. There we can see that the corners of
the table are successfully merged. Here again the horizontal parts lead to problems: the horizontal
border of the table is not grouped. Moreover because the reconstruction of the circular opening of
the cups is inaccurate due to the horizontal (and curved) parts, some parts of the cups are found
coplanar where they should not.

6
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(a)

(b)

(c)

Figure 4: Example of the extraction of Visual Gestalts using good continuation (b) and parallelism
+ co–colourity (c) (the red ellipses show the Gestalts).7
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(a)

(b)

(c)

Figure 5: Example of the extraction of Visual Gestalts using good continuation (b) and coplanarity
+ co–colourity (c) (the red ellipses show the Gestalts).8
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(a)

(b)

(c)

Figure 6: Example of the extraction of Visual Gestalts using good continuation (b) and coplanarity
+ co–colourity (c) (the red ellipses show the Gestalts).9
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These results show that relations, when extended to collinear groups becomes stronger predictor of
object structure than when applied to basic primitives. Although the group relations are directly
based on the primitives’ relations defined in [15], this extension offer a considerably lower likelihood
of accidental occurrence.
From these preliminary results, we propose to design a hierarchical architecture for representing
explicitly complex structures in the scene and evaluating the saliency thereof.

3D contours extraction: using the process explained in [15], we propose to extract contours from
the image representation provided by the primitives.

Evaluation of inter–contour relations in our case we will limit to 1) parallelism + co–colority;
and 2) coplanarity + co–colority. Future work should focus on integrating symmetry and the relations
provided by the addition of junction primitives (see [16]) into the scheme.

Design good structure to represent shapes As a result of the above-mentioned mechanism,
strongly structured objects should appear as densely linked in the resulting graph. If we consider the
simple case of a coloured square, we would have each side of the square as a contour. Opposed sides
would be parallel and contiguous sides would be coplanar. The advantage of a shape representation
based on 3D–contours is that it is largely independent from viewpoint,scaling and sampling. For
example, [26] proposed to use a similar hierarchical shape representation for the purpose of object
recognition.

Feedback the information to lower level processes E.g. the stereopsis. A stereopsis of good
quality is essential for the grouping process to perform well. On the other hand, at each level of the
grouping hierarchy new information is obtained that could be used to disambiguate stereopsis, in a
similar way that the lowest level grouping information was used in [24]. Chung and Nevatia [2] used a
similar approach to stereo disambiguation with the notable difference that they restricted themselves
to monocular grouping. We argue here that perceptual grouping and 3D–reconstruction should be
processed in parallel using extensive communication between the two processes.
Our objective is to address these points in the upcoming year, in order to obtain a higher level
symbolic scene representation.
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[19] N. Krüger and M. Felsberg. A continuous formulation of intrinsic dimension. Proceedings of the
British Machine Vision Conference, pages 261–270, 2003.
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Syddansk University, Denmark norbert@mmmi.sdu.dk

August 31, 2007

Abstract

In this paper, we first propose an analytic formula-
tion for the position’s and orientation’s uncertainty
of local 3D line descriptors reconstructed by stereo.
We evaluate these predicted uncertainties with Monte
Carlo simulations, and study their dependency on
different parameters (position and orientation). In a
second part, we use this definition to derive a new for-
mulation for inter–features distance and coplanarity.
These new formulations take into account the pre-
dicted uncertainty, allowing for better robustness.
We demonstrate the positive effect of the modified
definitions on some simple scenarios.

1 Introduction

Many computer vision applications make use of 3D
objects models, provided to the system. Because
these models are designed specifically for the task
at hand, they can be precise, rich, and concise at

the same time, and thereby simplify greatly reason-
ing problems. A common problem then is to relate
the visually reconstructed 3D information about the
scene with this accurate model knowledge. Local de-
scriptors, as presented in section 2, have the advan-
tage of being numerous and of describing the shape
of the objects being witnessed. Their downside is
that they describe only a small part of the object,
and therefore are not very distinctive, and that ob-
jects are not uniquely described by local descriptors,
due to sampling. Therefore it is advantageous to con-
sider, beside the primitives themselves, relations be-
tween them: distance, collinearity, coplanarity, etc.
For example, a square is described by parallel and
orthogonal strings of collinear 3D–primitives, posi-
tioned at fixed distance one from the other — see [1]
for a discussion of visual represenation with primi-
tives’ relations.

When using exogenous knowledge about the ob-
jects in the scene, and the relations that define them,
one need to consider the fact that primitives are only
reconstructed up to a certain precision. Thus, inter–

1
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Figure 1: Illustration of the uncertainty. The red
ovoid shows the position’s uncertainty, and the green
cone the orientation’s uncertainty. The axes of the
ellipse and the cone are computed from the Eigen–
values and associated Eigen–vectors of the covariance
matrices.

primitives relations can only be defined up to a cer-
tain tolerance that depends on primitive uncertainty.
Moreover, the selectivity of a relation is inversely pro-
portional to this tolerance. A primitive’s uncertainty
is function of image noise, calibration imprecision,
and inaccuracies in primitive extraction, stereopsis,
and reconstruction processes. This leads to large
variations in primitives’ uncertainty across the visual
field. Position’s uncertainty can be pictured as an
ovoid in space, containing the possible reconstructed
positions; similarly, orientation’s uncertainty forms a
distorted cone. This is illustrated in Fig. 1. In this
work we will model parameters uncertainty by their
covariance matrices, and predict their propagation
using a analytical first order approximation proposed
by [4, 5, 2]. This is discussed in the first part of this
paper, in section 3.

The computation of inter–primitives relations can
be severely affected by the imprecision in the 3D–
primitives’ reconstruction. For example, consider
the collinearity relation. If we make abstraction of
the primitives’ imprecision, we can use the stan-
dard mathematical definition: two 3D–primitives are
collinear if their orientation is parallel to the line

that joins them. Now if we add some imprecision in
the reconstruction process, these orientations will be
slightly different. Normally this could be addressed
by setting a threshold on the orientation difference,
but the primitives’ uncertainty depends on parame-
ters such as its orientation and position in space. In
other words, there is no single threshold that can be
set to define collinearity adequately for all cases. In
the second part of this paper, in section 4, we will con-
sider two relations: distance 4.1 and coplanarity 4.2.
For each relation we propose a classic Euclidian for-
mulation, and a second one taking into account the
primitives’ uncertainty, in a manner reminiscent of
the Mahalanobis distance. We compare the robust-
ness (how regularly correct primitives pairs are iden-
tified) and selectiveness (how often primitives are er-
roneously paired) of the two formulations.

2 The primitive–based vision
framework

In this paper we make use of a framework proposed
in [8]. This representation describes the image in
terms of a sparse set of local, multi–modal line de-
scriptors called 2D–primitives. In this work we are
only interested in the primitives’ position (m) and
local orientation (defined by the tangent vector t).1

A stereo–pair of 2D–primitives allows to recon-
struct a 3D–primitive: a local 3D contour descrip-
tor (which position is defined by M and orientation
by the tangent vector T ). Fig. 2 illustrates the 2D–
primitive extraction and 3D–primitive reconstruction
processes: (a) shows an image from an indoor naviga-
tion scenario; (b) shows the extracted 2D–primitives,
with a detail on the traffic sign in (c); finally, (d)
shows the 3D–primitives reconstructed by stereo.

3 Computing uncertainties

The computation of visual processes’ uncertainty has
been studied by several groups. Verri and Torre [13]

1 Primitives also hold some aspect parameters such as
colour and phase, that are useful for, e.g., the stereo–matching
process. See [8].
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(a) image (b) 2D–primitives

(c) 2D–primitives (detail) (d) 3D–primitives (detail)

Figure 2: Illustration of the primitive–based vision
framework presented in [8] and used in this study.

studied reconstructed points’ depth accuracy, and
found that the length of the baseline is critical for
the accuracy. Rodr̀ıguez and Aggarwal [11] proposed
to approximate reconstruction uncertainty by the rel-
ative range error, and Mandelbaum and colleagues [9]
handle the depth uncertainty as a minimax risk con-
fidence interval. These works only consider the depth
uncertainty in the case of point reconstruction. The
proposed formulations do not allow for an easy in-
clusion of additional parameters. Hartley and Zisser-
man [6] argue that the angle between the optical rays
back–projected by a pair of image points yields a bet-
ter estimate of the reconstructed point’s covariance
than the disparity. Wolff [14] discussed the stereo–
reconstruction of lines, and propose an estimation of
the reconstructed orientation’s uncertainty, demon-
strating that reconstructing lines as an intersection
of planes lead to a better accuracy than reconstruct-
ing the lines’ endpoints. The proposed analytical
derivation is less general specific than the one used
in this paper. Clarke [2] also suggests to use Monte–
Carlo simulation to estimate uncertainty, but points
out the extreme computational cost of this approach.

We argue that this approach is unpractical when tak-
ing additional parameters into account (orientation,
sparseness, cameras’ projection matrices), but pro-
vides an efficient way to evaluate an analytic deriva-
tion (see section 3.3). Heuel and colleages [7] pro-
posed a 3D line reconstruction using uncertain geom-
etry. Their approach focuses on polyhedral objects,
whereas the primitive–based framework used herein
allows the representation of curved contours using lo-
cal edge descriptors. This locality aspect requires us
to reconstruct a position on the reconstructed 3D–
line.

In this work, we first estimate the 2D–primitive’s
extraction process uncertainty, then describe how it
propagates to 3D–primitives, using the formulation
proposed by [4, 5, 2]. Additional uncertainties stem
from the projection matrices (these should be ob-
tained from camera calibration), from stereo match-
ing (an estimation is proposed here), and local cur-
vature (that we will neglect in this paper). We model
parameters’ uncertainties with their covariance ma-
trices (see, e.g., [2]).

Uncertainty propagation Given a function y =
f(m), where x and y are vectors with associated
covariance matrices Λx and Λy, a first order Taylor
series expansion gives us:

f(x + ∆x) = f(x) +∇f(x) ·∆x + O(||∆x||2) (1)

from there [2] derives that the relation between the
covariance matrices of m and y is approximated by
the relation

Λy ≈ ∇f ·Λx · ∇f> (2)

where ∇f is the Jacobian matrix for the function f .
This is the main result used hereafter to estimate
uncertainties’ propagation during stereo reconstruc-
tion. In the following we will equivalently denote
Λ = σ2 the variances of scalar values, and Λ the
covariance matrices of vector quantities. Also, in the
one–dimensional case, ∇f(x) = ∂f(x)

∂x is the deriva-
tive of f(x).
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3.1 2D–primitive uncertainty

Consider a set of 2D–primitives πi, we want to esti-
mate the 2D–primitives’ position and orientation un-
certainty. In [8], the 2D–primitives’ position mean
square error was evaluated to ε < 0.252 pixels. For
simplicity, we assume an isotropic error in the fol-
lowing2 and approximate the primitive’s localisation
covariance matrix Λm̃ by:

Λm '

 ε 0 0
0 ε 0
0 0 0

 (3)

Note that this covariance matrix corresponds to the
of the 2D–primitive’s homogeneous position m̃, and
therefore its third dimension’s variance is null.

A 2D–primitive’s orientation variance is approxi-
mated to its mean square error, evalutated in [8] to
Λθ ' 0.032 radians.

3.2 Reconstruction uncertainty

We then study the propagation of 2D–primitives’ un-
certainty during stereo–reconstruction, and estimate
the resulting 3D–primitives’ uncertainty.

The relation between points in space and their pro-
jection in the image is defined by the camera’s pro-
jection matrix P̃ (see [5, 6]). In the following, and for
the sake of simplicity, we assume that the cameras’
parameters are known, and their projection matrix
exact ΛP̃ = 012×12. In the general case, the pro-
jection matrix will be estimated empirically through
a process called calibration that provides its uncer-
tainty as a by–product [3].

Classical stereo–reconstruction tries to intersect
two optical rays containing the possible origins of (or
back–projected by) two corresponding points in two
images. Because of imprecision, it is unlikely that
the two lines intersect, and therefore the closest point
to both rays is usually chosen. This approach is in-
adapted in the case of local line descriptors because
the aperture problem makes reliable point matching
impossible. On the other hand, [14] discussed that

2 Although the actual localisation error of 2D–primitives is
more significant in the direction orthogonal to the contour’s
orientation.

accurate line matching could be achieved by inter-
secting the two planes back–projected from the lines
in each image. Moreover, because primitives are lo-
cal line descriptors we need a location along this line.
This is obtained by intersecting the line containing
the left 2D–primitive’s position possible origins with
the plane containing the right 2D–primitive’s possi-
ble origins. The computation of the 3D–primitives’
uncertainty is similar to the work of [2, 7], and is
described in Appendices A and B.

3.3 Evaluation

We evaluate the quality of the uncertainties predicted
by the above formulae, using a Monte Carlo sim-
ulation in a simple scenario. The focal length is
set to f = 103 and the baseline to b = 100, so
that the optical centres of the cameras are located
at C1 = (0, 0, 0)> and C2 = (b, 0, 0)>. 3

Consider a 3D–primitive at a location M̂ =
(0, 0, 100)> and with an orientation T̂ , projected on
both image planes as π̂ l and π̂r. Using a Monte
Carlo simulation of 100.000 particles, we measured
a relative error between predicted and measured co-
variance matrices ξ = ‖Λ′−Λ‖

‖Λ′‖ of ∼ 3% for position,
and ∼ 4% for orientation.

We then investigated how the 3D–primitive’s posi-
tion and orientation impact the uncertainty thereof.
We compared the trace tr(Λ) of the reconstructed po-
sition’s covariance matrix (sum of the Eigen–values),
at different locations in space (Figs. 3(a), 3(b),
and 3(c) for different values of the x (horizontal), y
(vertical), and z (depth) coordinates) and for differ-
ent pairs of 2D–orientations (Fig. 4(a)).

These figures show that the reconstructed posi-
tion’s covariance is affected by the distance from the
primitive to the cameras’ optical centres and by the
right 2D–primitive’s orientation.

The trace tr(Λm) in Fig. 4(a) is mostly affected
by θ2. This is due to the line reconstruction formula
used in this work — see section 3.2. In this formu-
lation, the right 2D–primitive’s orientation is used

3 These values were chosen for simplicity, but are neverthe-
less plausible: they are similar to the calibration parameters
of an actual stereo camera system.
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Figure 3: Traces of the covariance matrix ΛM , for (a) different locations M = (x, y, 100)> on the xy–plane;
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Figure 4: Effect of 2D–primitives’ orientations on
(a) the trace of ΛM ; and (b) the trace of ΛT .

to resolve the ambiguity that stems from the aper-
ture problem (we compute the intersection between
a back–projected left ray and a back–projected right
plane, see Eq. (26)). This becomes impossible when
the primitive’s orientation is the same that the epipo-
lar line’s (in this case if θ2 = π

2 ), and therefore the
reconstructed 3D–primitive’s position uncertainty in-
creases to infinity for orientations close to π

2 .

We then evaluated the 2D–primitives’ orientation
impact on the reconstructed 3D–primitive’s orienta-
tion uncertainty. Fig. 4 plots the trace of the recon-
structed orientation’s covariance matrix for a point
located at m = (0, 0, 100)>, reconstructed from dif-
ferent 2D–primitives’ orientations. In this figure we
see that the reconstructed orientation uncertainty in-
creases when either of the 2D–primitive’s orientation
becomes close to π

2 . When both orientations become
close to θ1 = θ2 = π

2 two primitives back–project the

same plane P1 = P2, and therefore their intersection
is undefined.

4 Design of relations between
3D–primitives

In this section we consider distance and coplanarity
between 3D–primitives, and propose definitions that
take the uncertainties thereof into account, based on
the Mahalanobis distance.

4.1 Distance between 3D–primitives

The first relation that we consider is the distance be-
tween two reconstructed 3D–primitives.

Consider the following scenario: three primitives,
located at points A = (100, 100, z)>, B = A + u
(u = (a, 0, 0)>) and C = (a + b + 100, 100, z)>, with
a vertical orientation (a = 50 and b = 10). These
points’ projections on both image planes are sub-
jected to a zero–mean Gaussian perturbation applied
to the projected 2D–primitives’ position and orien-
tation, with a standard deviation of σ = 0.25 and
σ = 0.03 respectively. Then we reconstruct the 3D–
primitives Πi as described in section 3.2. We assume
that we have the model knowledge that B lies at a
distance of exactly b from A, and we want to use this
knowledge to identify the primitives Π that belong
to A, B, and C. This is illustrated in a concrete
scenario in Fig. 5. In this scenario, we know that the
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Figure 5: Example of the distance relation, for
nearby and far primitives pairs. The red lines in-
dicate valid pairs.
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Figure 6: Comparison of the robustness of Euclidian
(E) and Mahalanobis (M) distances, for the values
a = 50, b = 5, α = 20, and β = 5.

two red lines on the ground, delimiting the road, are
separated by a distance a of 120cm. Using this world
knowledge, we search for pairs of primitives that are
separated by this distance, plus or minus 10cm. The
figure shows the valid pairs for nearby and far 3D–
primitives. In each case the red lines indicate with
which other primitive it forms a valid pair according
to each definition for distance.

We compare the performance of different distance
measures for this task:

Euclidian distance threshold (E): We defined
the threshold on the Euclidian distance as follows:∣∣d2

E(Π1,Π2)− ‖y‖)
∣∣ < α2 (4)

where d2
E(Π1,Π2) stands for the squared Euclidian

distance between Π1 and Π2.

Mahalanobis distance (M): The second crite-
rion is based on the Mahalanobis distance:

((Π1 +u)−Π2)>(ΛΠ1 +ΛΠ2)
−1((Π1 +u)−Π2) < β

(5)
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4.1.1 Evaluation

We compared the performance and robustness of
both formulations using artificial images. We set
a = 50, b = 5, α = 20, and β = 5. The results are
summarised in Fig. 6, the true positives curves (ETP
and MTP) express the ratios of experiments wherein
the reconstructed 3D–primitives A′ and B′ comply
with the criterion (respectively E and M). The false
positive curves (EFP and MFP) express the ratios of
experiments wherein the reconstructed 3D–primitives
A′ and C′ satisfy the criterion. In this figure, we
see that the number of true positive of the Euclid-
ian criterion (ETP) decreases with depth. 4 On the
other hand, the ratio of true positive (MTP) is sta-
ble for the Mahalanobis distance. The false positives
(MFP) increase progressively for large uncertainties,
when the distribution of B and C overlap signifi-
cantly. This shows that the normalised Mahalanobis
distance is better suited for drawing spatial relations
between reconstructed 3D–primitives.

This trend is illustrated qualitatively on real im-
ages in figure 5. There we have the values: a = 120,
α = 10, and β = 0.5.

4.2 Coplanarity relation

The second relation we studied is the coplanarity be-
tween two reconstructed 3D–primitives. As before,
we consider three 3D–primitives, A, B, and C, with
cop(A,B) = 1 and cop(A,C) ' 0.70 — this means
an angle of π

4 . The 3D–primitives are projected onto
the image planes as before, the same Gaussian per-
turbation is applied, and both coplanarity criteria are
applied to the reconstructed 3D–primitives Πi.

Coplanarity is defined as follows:

cop(Π1,Π2) = (V × T 1) · (V × T 2) (6)

where V = 1
||M2−M1|| ·(M2−M1). By using Eq.(13)

in Eq.(6) we obtain the variance of the coplanarity

4 Note that the performance of the Euclidian distance (E)
could be improved for a certain region of the space by altering
α. Nonetheless, the general trend will be the same: larger
α lead to more false positives for nearby structures, and the
number of true positives tend to zero for far structures.
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Figure 7: Proportion of coplanar pairs correctly la-
belled, using a fixed (E) and a variance dependent
threshold (A), respectively.

measure:

Λcop =
(

η>2 η>1
)
·
(

ΛV ×T 1

ΛV ×T 2

)
·
(

η2

η1

)
(7)

with ηi = V × T i the normal to the plane formed
by the orientation T i and the points M1 and M2.
Therefore, we propose the two following criteria for
coplanarity:

Euclidian coplanarity: The first definition sim-
ply applies a threshold on the coplanarity value:

1− cop(Π1,Π2) < α (8)

Mahalanobis coplanarity: The second definition
makes use of the estimated coplanarity variance to
derive a Mahalanobis–like criterion:

Λcop · (1− cop(Π1,Π2)2 < β (9)

These two criteria, in Eq. 8 and 9, are compared
in Fig 7, for values α = 0.01 and β = 0.5. In this
figure: ETP is the ratio of cases where Eq. 8 is verified
between A′ and B′, EFP where it is between A′ and
C′; ATP the ratio where Eq. (9) is satisfied between
A′ and B′ and AFP the ratio where it is satisfied
between A′ and C′. In Fig. 7 we see that the ratio
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(a) Euclidian (b) Mahalanobis

Figure 8: Illustration of the coplanar pairs extracted.
The red lines show the primitives coplanar near (bot-
tom) and far (top) from the camera.

ETP reduces quickly with the increase of depth. The
ATP ration, on the other hand, is stable, while the
AFP ratio increases with depth. This shows that the
variance adapted threshold is a more robust criterion
for reconstructed features’ coplanarity than the naive
Euclidian criterion, and this across a wide range of
depth.

The result is further illustrated in Fig. 8. We see
that when using the Mahalanobis version, the copla-
nar structures (red) are more densely connected than
when using the Euclidian threshold, thus coplanarity
is more reliably asserted. Furthermore, it is visi-
ble that the Euclidian criterion interpretes some of
the farther green primitives as coplanar with the red
ones.

5 Conclusion

This paper presented an uncertainty analysis for a vi-
sion framework using the primitives proposed by [8],
and the scene description in terms of inter–primitives
relation discussed in [1]. In a first part we discussed
how image and calibration uncertainty propagates
during the reconstruction process. This result, al-
though classic in nature (e.g., [2]), allowed us to for-
malise the peculiarities of the uncertainty space that
stems from our use of local line descriptors (mainly its
strong dependence on 2D orientation). This analytic

formulation of uncertainty propagation was demon-
strated to be accurate by Monte Carlo simulations.

The second and most important part of this paper
considers inter–primitives geometric relations, focus-
ing on the cases of distance and coplanarity. In [1] it
was discussed that such relations form a good base for
the interpreting visual information, and confronting
it with available prior geometric information about
the scene. The 3D–primitives’ uncertainties com-
puted in the first part were used to design alterna-
tive formulations of those relations that take parame-
ters’ uncertainty into account. The new formulations
were shown to detect geometric relations in a more
robust fashion than the naive Euclidian ones, and
across wide ranges of depth.

In this paper we derived an analytic formula-
tion for uncertainty propagation during the stereo–
reconstruction of local line primitives. Although the
derivation presented here is specific to the represen-
tation proposed in [8], it can be easily adapted to
other line–based features. The advantage of an ex-
plicit analytic formulation of the uncertainty is, it
allows us to accurately model the whole complexity
of the uncertainty space. Estimating such a high di-
mensional space by Monte Carlo simulation would be
impractical.

In a second part we used these uncertainties to de-
fine relations between reconstructed 3D–primitives.
The relations are a way to apply prior geometrical
knowledge about the scene onto the reconstructed
3D representation. Such relations need to allow for a
certain imprecision in the 3D–primitives, imprecision
that is itself a function of the parameters thereof.
Therefore, in order to define inter–primitives rela-
tions in a robust manner, we need to take into ac-
count the uncertainty defined in the first part of this
paper. We proposed covariance–adapted criteria for
distance and coplanarity, and we have shown that
these criteria were more robust to differences in depth
than naive Euclidian definitions.
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[8] N. Krüger, N. Pugeault, and F. Wörgötter.
Multi-modal primitives: Local, condensed, and
semantically rich visual descriptors and the for-
malization of contextual information (also avail-
able as technical report (2007-4) of the robotics
group maersk institute, university of southern
denmark). submitted. 2, 3, 4, 8

[9] R. Mandelbaum, G. Kamberova, and M. Mintz.
Stereo depth estimation: a confidence interval
approach, 1998. 3

[10] E. Maxwell. General homogeneous coordinates in
space of three dimensions. Cambridge University
Press, 1951. 10

[11] J. J. Rodr̀ıguez and J. K. Aggarwal. Quantiza-
tion error in stereo imaging. In Proceedings of
the CVPR, 1988. 3

[12] F. Shevlin. Analysis of orientation problems us-
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A Error propagation

Image point back–projection covariance The
intersection of the optical ray back–projected from an
image point with the plane at infinity is computed as
follows:

D = P−1m = fD(u, v, 1, p11, . . . , p33) (10)

and therefore, according to Eq. 3 we have

ΛD = ∇fD ·
(

Λm

ΛP −1

)
· ∇f>D (11)

where ∇fD stands for the Jacobian of a R12 to R3

mapping (therefore a 3 × 12 matrix), and is defined
as follows:

∇fD =

 P−1
∗1 P−1

∗2 0>3

 m>

m>

m>

 
(12)

where P−1
∗i refers to the ith column vector of the ma-

trix P−1.
The vector D is then normalised as in appendix A.

Covariance of the cross product The cross
product of two vector propagates uncertainties ac-
cording to the following formula (see [2]):

ΛC×D = ∇(C ×D) ·
(

ΛC

ΛD

)
· ∇(C ×D)>

(13)
where the Jacobian of the cross product is defined as
follows

∇(C ×D) =
(
−[D]× [C]×

)
(14)

In this equation,

[A]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (15)
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correspond to the matrix formulation of the cross
product with the vector a = (a1, a2, a3)>, such that
[A]× · (x1, x2, x3)> = a× (x1, x2, x3)>.

Vector normalisation covariance Any vector v
with a covariance matrix Λv is collinear with a nor-
malised vector v̄ with a covariance matrix:

Λv̄ = ∇norm ∗Λv ∗ ∇>
norm (16)

where ∇norm is the Jacobian of the normalisation op-
eration, defined as follows:

∇norm =
1

||v||3
·

 v2
2 + v2

3 −v1v2 −v1v3

−v1v2 v2
1 + v2

3 −v2v3

−v1v3 −v2v3 v2
1 + v2

2


(17)

Conversion from homogeneous to Euclidian
coordinates The conversion from homogeneous
coordinates to Euclidian is obtained by the follow-
ing formula:

g :


x
y
z
w

 →

 x
w
y
w
z
w

 (18)

According to [2], the covariance of the resulting di-
mension 3 vector is given by the following formula:

ΛM = ∇g ·ΛM̃ · ∇g> (19)

where M̃ is the homogeneous coordinate vector, M
is the 3D Euclidian coordinate vector, and ∇g is the
Jacobian of the conversion (see [2]):

∇g =
1

w2

 w 0 0 −x
0 w 0 −y
0 0 w −z

 (20)

B Uncertainty propagation
during reconstruction

Uncertainty of the back–projected ray Con-
sider a camera with an optical centre C and a pro-
jection matrix P̃ (the tilde denotes an homogeneous

formulation). The optical centre of a camera is given
by its projection matrix (see, e.g., [5]), and there-
fore its covariance is also null: ΛC = 03×3 Then, all
3D points that could possibly be projected by this
camera on an image point m lie on the line in space
defined by the Plücker coordinates L = (ν,µ)>. In
the Plücker representation of lines in space, ν is the
line’s orientation vector, and µ is called its moment,
and satisfies m · ν = µ, ∀m ∈ L. See [12] for a dis-
cussion of Plücker’s formulation advantages. From,
e.g., [10], we have

L = (D , C ×D) (21)

where D is the back–projection of the point m on
the plane at infinity — see appendix A. According to
Eq. (2), this line’s covariance is approximated by the
following 6× 6 block diagonal matrix:

ΛL =
(

Λν = ΛD

Λµ = ΛC×D

)
(22)

where ΛC and ΛD are 3× 3 covariance matrices.

Uncertainty of the back–projected plane
Considering the same camera set–up, all 3D–points
that project onto a line containing the point m and
with an orientation t, lie on a 3D plane P = (η>,−h),
where η is the normal to the plane P, and h is the
Hesse distance (the smallest distance from the origin
to a point on the plane). From classical geometry, we
know that a plane in space can be computed from 3
non–collinear points, or alternatively from one point
and two non–collinear vectors. In this case, we use
the optical centre C, the 2D–primitive’s position m
back–projection at infinity D (see appendix A), and
the 2D–primitive’s orientation vector t to compute
the plane’s coordinates:

P =
(

T ×D

C> · (T ×D)

)
= fP(C,D,T ) (23)

where T = P−1 · t is a vector lying on the plane P.
Therefore the plane’s covariance is the 4×4 matrix:

ΛP = ∇fP ·

 ΛC

ΛD

ΛT

 · ∇f>P (24)
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where ∇fP is the 4× 9 Jacobian

∇fP =
(

03×3 −[T ]× [M ]×
M∞ × T T ×C D ×C

)
(25)

Intersection between a line and a plane The
line L = (ν>,µ>) intersect with the plane P =
(η>,−h) at the homogeneous point:

M̃ =
(

η × µ + hν
η · ν

)
= fM̃ (ν>,µ>,η>, h) (26)

The uncertainty of this computation is computed by
applying Eq.(2) to Eq.(26):

ΛM̃ = ∇fM̃ ·
(

ΛL
ΛP

)
· ∇f>

M̃
(27)

There, fM̃ is the intersection function, defined as fol-
lows:

fM̃ (ν>,µ>,η>, h) =
(

η × µ + hν
η · ν

)
(28)

and its Jacobian ∇fM̃ is the 4× 10 matrix:

∇fM =
(

h · I3×3 ∇(η × µ) ν
η> 0>3 ν> 0

)
(29)

This yields 3D homogeneous points, that can be
transformed to 3D Euclidian coordinates — see ap-
pendix A.

Intersection of two planes The 3D–primitive’s
orientation is reconstructed by intersecting the
two back–projected planes P l = (η>,−h) (back–
projected from the left image) and Pr = (η′>,−h′)
(back–projected from the right image):

L = l(P l,Pr) =
(

η × η′

h′η − hη′

)
(30)

because we are only interested in the line’s orienta-
tion, we can disregard its moment (three last columns
and rows of the block matrix). Therefore, the orienta-
tion vector’s covariance is given by the cross product
of the two planes’ normals:

ΛT = ∇(η × η′) ·
(

Λη

Λη′

)
· ∇(η × η′)> (31)

We obtain Λη from the plane’s covariance matrix ΛP

three upper rows, as computed in Eq.(24). The cross
product error propagation is given in appendix A.

Therefore Eq. (28) and (31) predict a recon-
structed 3D–primitive’s localisation and orientation
uncertainty as function of several parameters: 2D–
primitive extraction, stereo–match and projection
matrices uncertainties on the one hand, and 2D–
primitives’ position and orientation on the other.
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